Quick Shot

Development of the Talbot-Lau X-ray Deflectometer (TXD) diagnostic for OMEGA EP

June 16, 2021
Monochromatic Talbot–Lau x-ray deflectometer in background with inset photo of Talbot–Lau x-ray deflectometer during shot 34890.

The Johns Hopkins X-ray Imaging Group has developed an advanced refraction-based x-ray diagnostic for High Energy Density Laboratory Plasmas (HEDLP) under NNSA sponsorship. Talbot–Lau x-ray interferometry provides electron density diagnostics by measuring the refraction of a probing x-ray, produced by the changes in density in a probed plasma. In deflectometry mode (TXD),  phase-contrast, attenuation, and small-angle scattering can be inferred by Fourier analysis from a single Moiré image. It can also provide elemental composition and detect the presence of microstructures.

A Talbot–Lau X-ray Deflectometer (TXD) capable of diagnosing electron density gradients relevant to Inertial Confinement Fusion was implemented on OMEGA EP to characterize the evolution of an irradiated foil ablation front by mapping line-integrated electron density gradients. In the first experiment to benchmark the diagnostic platform, grating survival and Moiré fringe formation with 60 to 80 µm spatial resolution was demonstrated. In preparation for a follow-up campaign, x-ray backlighter studies on MTW characterized source size and spectral quality of K-shell emission from irradiated copper foil, wire, and bookend targets to optimize photon flux and spatial resolution. A  second OMEGA EP campaign (sponsored by LaserNetUS) mapped the ablation front of a CH foil irradiated by a 150 J, 2 ns laser pulse  5 ns after laser incidence. The EP-TXD diagnostic recorded, for the first time, x-ray refraction angles <150 µradians with spatial resolutions of 10 to 30 µm.

A third campaign is currently underway to increase the Moiré fringe contrast by developing Monochromatic Talbot–Lau capabilities because the background signals observed in previous experiments significant decreases contrast and hampers the accuracy and sensitivity of phase-retrieval from Moiré images. This Monochromatic Talbot-Lau X-ray Deflectometer (EP-M-TXD) includes a multilayer mirror that selects the K-alpha 8 keV emission from copper targets to further enhance the angular refraction sensitivity. A first prototype was designed, implemented, and tested on MTW and OMEGA EP.

A new NLUF campaign will seek to optimize x-ray backlighting for EP-M-TXD diagnostics to characterize shell-release experiments as well as probing irradiated foils through TXD to help benchmark MHD codes and simulations by mapping the evolution of the ablation front near critical density. The deflectometer was previously featured as a Quick Shot in March of 2019.