• URLLE
  • University of Rochester
  • URLLE
  • University of Rochester
  • News
  • About
    • More Information
      • Partnerships
      • Awards, Honors, and Fellowships
      • LLE Timeline
      • Omega Laser Facility Users Group
      • Laboratory Basic Science
      • National Laser Users’ Facility
      • Videos Featuring LLE
    • Our Team
      • Senior Leadership
      • Management Team
        • Administrative Division
        • Engineering Division
        • Experimental Division
        • Laboratory Safety
        • Laser and Materials Technology
        • Omega Laser Facility Division
        • Plasma & Ultrafast Laser Science & Engineering Division
        • Theory Division
      • Office of the Director
    • Careers
    • Visitor Information
      • LLE Visitor Information Form
      • Map to LLE
      • LLE Tours
  • Omega Laser Facility
    • Omega Laser Systems
      • OMEGA Laser System
      • OMEGA EP Laser System
      • Joint Operations
    • Operations
      • Omega Laser Facility Schedule
      • OMEGA Launchpad
      • OMEGA EP Launchpad
      • Operations Personnel
    • Operations Groups
      • Beamlines
      • Laser Amplifiers
      • Power Conditioning
      • Drivers
  • MTW Laser Facility
    • Operations
      • MTW Launchpad
      • MTW Laser Facility Schedule
      • MTW FAQ’s
      • MTW Performance Envelope
  • Education
    • Graduate Studies
      • Graduate Program Faculty and Contacts
      • Computational Astrophysics
      • HED Physics
      • Inertial Confinement Fusion
      • Laser–Plasma Interaction
      • Radiative Hydrodynamics
      • Plasma Astrophysics
    • Undergraduate Program
    • Summer High School Research Program
  • Research Areas
    • High-Energy-Density Physics (HEDP) Experiments
    • Innovative Concepts
    • Omega Experiments
    • Plasma Physics
      • Laser–Plasma Interactions
      • Ultrafast Laser–Plasma Physics
      • Ultrafast Laser-Plasma Diagnostics
      • Relativistic Laser-Plasma Experiments
      • Plasma & Ultrafast Laser Science & Engineering Graduate Students
      • PULSE Researchers
    • High-Energy-Density Physics (HEDP) Theory
    • Integrated Modeling
  • Publications
    • LLE in Focus
    • LLE Review
    • Annual Report
    • Theses
      • LLE Theses
      • Theses from NLUF and other External University Student Research
  • Safety Zone
    • Medical Emergency
    • Safety Training
    • LLE Incident Reports
    • Radiological Safety
    • Safety Disclaimer
    • Safety Resources
  • News
  • About
    • More Information
      • Partnerships
      • Awards, Honors, and Fellowships
      • LLE Timeline
      • Omega Laser Facility Users Group
      • Laboratory Basic Science
      • National Laser Users’ Facility
      • Videos Featuring LLE
    • Our Team
      • Senior Leadership
      • Management Team
        • Administrative Division
        • Engineering Division
        • Experimental Division
        • Laboratory Safety
        • Laser and Materials Technology
        • Omega Laser Facility Division
        • Plasma & Ultrafast Laser Science & Engineering Division
        • Theory Division
      • Office of the Director
    • Careers
    • Visitor Information
      • LLE Visitor Information Form
      • Map to LLE
      • LLE Tours
  • Omega Laser Facility
    • Omega Laser Systems
      • OMEGA Laser System
      • OMEGA EP Laser System
      • Joint Operations
    • Operations
      • Omega Laser Facility Schedule
      • OMEGA Launchpad
      • OMEGA EP Launchpad
      • Operations Personnel
    • Operations Groups
      • Beamlines
      • Laser Amplifiers
      • Power Conditioning
      • Drivers
  • MTW Laser Facility
    • Operations
      • MTW Launchpad
      • MTW Laser Facility Schedule
      • MTW FAQ’s
      • MTW Performance Envelope
  • Education
    • Graduate Studies
      • Graduate Program Faculty and Contacts
      • Computational Astrophysics
      • HED Physics
      • Inertial Confinement Fusion
      • Laser–Plasma Interaction
      • Radiative Hydrodynamics
      • Plasma Astrophysics
    • Undergraduate Program
    • Summer High School Research Program
  • Research Areas
    • High-Energy-Density Physics (HEDP) Experiments
    • Innovative Concepts
    • Omega Experiments
    • Plasma Physics
      • Laser–Plasma Interactions
      • Ultrafast Laser–Plasma Physics
      • Ultrafast Laser-Plasma Diagnostics
      • Relativistic Laser-Plasma Experiments
      • Plasma & Ultrafast Laser Science & Engineering Graduate Students
      • PULSE Researchers
    • High-Energy-Density Physics (HEDP) Theory
    • Integrated Modeling
  • Publications
    • LLE in Focus
    • LLE Review
    • Annual Report
    • Theses
      • LLE Theses
      • Theses from NLUF and other External University Student Research
  • Safety Zone
    • Medical Emergency
    • Safety Training
    • LLE Incident Reports
    • Radiological Safety
    • Safety Disclaimer
    • Safety Resources

Quick Shot

  • March 28, 2025

LLE Scientists Included in the 2024 Physics of Plasmas Early Career Collection

Victor Zhang and Will Trickey posing in front of the Laboratory for Laser Energetics branding wall.

Congratulations to LLE Assistant Scientist Will Trickey and to doctoral student Victor (Yu) Zhang, whose work was recently selected for inclusion in the 2024 Physics of Plasmas Early Career Collection—the third collection published since 2022 highlighting many of the outstanding papers authored by the next-generation of plasma physicists. This volume includes 31 authors and their papers published last year across each topical section of Physics of Plasmas.

“I am excited to be part of [this collection] as I wrap up my PhD and look forward to what’s next,” Zhang says. “This simulation study is the basis of a current NIF Discovery Science campaign led by UCLA, aiming to make the first-ever observations of a quasi-parallel, magnetized, collisionless shocks in the laboratory. We are looking forward with great anticipation to the potentially groundbreaking outcomes. Stay tuned for our new study on collisionless ion-electron energy exchange.”

Trickey, whose paper explores the physics of gain relevant to inertial fusion energy target designs, says, “I’m honored to be featured in the 2024 Physics of Plasmas Early Career Collection. This study outlines the performance of inertial confinement fusion (ICF) targets at the megajoule scale and could serve as a valuable resource amid renewed interest in inertial fusion energy following the recent demonstration of laser-driven ICF ignition in the laboratory.”

Congratulations, Victor and Will, on this fantastic achievement!

Past Quick Shots

More Posts

Petros Tzeferacos.

University of Rochester and LLE Faculty and Collaborator Receive 2025 PECASE Award

IFE STAR logo on dark background of the earth and sky at night with the United States highlighted in purple with white and green dots all over the country connected by sweeping lines.

LLE Launches IFE-STAR Ecosystem, Conference, and Workforce Development Initiatives

LLE’s Cryogenic and Tritium Facility Sets New Record in 2024

LLE-Sydor-SBIR-Phase II

LLE and Sydor Technologies Awarded $1.15M DOE Phase II SBIR Grant for Fusion Research

For Employees

  • URLLE
  • Resources
  • Safety
  • URLLE
  • Resources
  • Safety

Resources

  • Nondiscrimination Statement
  • Nondiscrimination Statement

Quick Links

  • News
  • About
  • Careers
  • News
  • About
  • Careers
Linkedin

Contact

  • Webmaster
  • LLE Phonebook
  • 250 E. River Rd, Rochester, NY 14623-1299
  • Webmaster
  • LLE Phonebook
  • 250 E. River Rd, Rochester, NY 14623-1299

© 1996 - 2025 Laboratory for Laser Energetics