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Abstract-A series of numerical experiments have been conducted to investigate the dynamics and 
neutron production in laser irradiated, dense spherically symmetric plasmas. The results have led 
to the development of scalings for energy absorption, shock strength and optimum neutron production 
for sub-nanosecond, high energy pulses. 

1. INTRODUCTION 
THE POSSIBILITY of using high power pulsed lasers to initiate fusion reactions in dense 
plasmas has stimulated great interest in their dynamics. We have conducted a series 
of numerical experiments to investigate the dynamics and neutron production in laser 
irradiated, dense, spherically symmetric plasmas. In particular, we are interested 
in developing scalings for the absorbed energy, the shoc!c strength and the neutron 
production. 

A dense plasma can be described by the hydrodynamic and phenomenological 
equations set forth in Section 2. These are incorporated in a numerical model, 
developed into the LPP-I computer code (GOLDMAN, 1971), which includes classical 
absorption (DAWSON and OBERMAN, 1962), a relativistic correction and cut-off in an 
overdense plasma (KAW and DAWSON, 1963), separate species temperatures, and 
molecular heat transport. Fluid-in-Cell methods (GENTRY et al.,  1966), suitably 
modified for two temperature plasmas with implicit treatment of the energy terms, are 
used to integrate the model equations. 

Our work differs in a number of significant aspects from the few previous numer- 
ical investigations of spherical laser plasmas. There is no apriori constraint on the 
density and velocity proiiies as imposed on the similarity models (HAUGHT and 
POLK, 1970; LUBIN et al., 1971). The EPP-1 code allows for arbitrary initial con- 
ditions which we have taken to be a cold plasma at  rest with a dense inner core 
surrounded by a low density tail (the exact specifications are given in Section 3). 
Other Lagrangian codes have been used to examine the result of plasma irradiation by 
low power lasers for comparison with specific experiments (FADER, 1968; MEAD, 
1970). Since there is no attempt to reproduce experimental data here, we are free to 
examine more energetic pulses and obtain a richer set of results. 

Section 3 contains a discussion of the plasma dynamics and Section 4 contains 
the results of 30 numerical experiments with different size plasmas and digerent laser 
powers (all experiments were run with 10 psec rise time pulses). Two important 
observations are made. The first is that once part of the laser energy absorbed by the 
tail electrons has been transported into the dense core, a spherically converging heat 
front is formed. In accordance with the theory of non-linear heat conduction, the 
front may or may not transform into an imploding shock wave depending on the 
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amount of electron thermal energy behind it. The dynamics of the plasma and its 
neutron production differ greatly under these two possibilities. A second observation 
is that a graph of total neutron production as a function of the absorbed energy shows 
a peak in that portion of the curve which represents shock cases. 

In Section 5 we develop a scaling to predict the amount of absorption in a given 
plasma, and in Section 6 we develop a model to predict neutron production as a 
function of the imploding shock speed. Section 7 is an analysis of shock wave forma- 
tion which uses the model of Section 6 to explain the results in Section 4. The final 
section contains a scaling for the shock wave speed and the absorbed energy. Com- 
bining these results, the scaling of Section 5 gives the absorbed energy, that of Sec- 
tion 8 the shock speed and the model of Section 6 the neutron production for a 
specified plasma and laser pulse. 

2.  THE PLASMA MODEL 
We assume that we are working with a fully ionized, quasi-neutral two temperature 

plasma whose components are perfect gases. The ions (singly charged) and the elect- 
rons will have the same number density n and the same velocity U so that only a single 
momentum equation is required (GOLDMAN, 1971) 

au au ap 
at ar ar 

p - + pu - + - = 0 

where 
p = (m' + m-)n, p = nk(T+ + 2"-) 

and m* and T= are the masses and temperatures of the ions and electrons. Two 
individual energy equations account for the separate species temperatures 

Taking the ratio of specific heats to have a constant value of 3 ,  we can write the 
energies in terms of the temperatures as 

e& = gkT+/m+. (5 )  

Viscosity does not contribute to the evolution of the plasma except in the very 
narrow region of the shock or thermal front. Since this contribution is essentially 
negligible compared to other effects, true viscous terms are omitted in favor of a 
pseudo-viscous pressure of the type used by GENTRY et al. (1966) in the numerical 
computation. The evolution is dominated by the thermal effects; laser heating, 
electron heat conduction, and the energy transfer between species (also referred to as 
temperature relaxation). 

W is the rate at which energy is absorbed by the plasma 
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p,$(t) is the power profile of the laser pulse where $(t)  is the modified Gaussian 

1.9t/t, t / t ,  < 0.455 
exp [ - (1  - t/t,)2/2.0164] 0.455 I t/t, I 1 

exp [-(1 - t/tT)2] 

\o 
1 < tit, I 2 
tit, > 2 

i $(t)  = (7) 

t,, the rise time, is the half-width of the pulse and is the only parameter necessary to  
specify $(t)  as shown in Fig. 1. Since little energy would be absorbed from a pulse 
continuing beyond two rise times, we have assumed a cut-of€ at  this point in order 
to reduce the computation time needed for each case. r*(t )  is the outer radius of the 
plasma and K ( Y ,  t )  is the absorption coefficient (DAWSON and QBERMAN, 1962) 

K ( Y ,  t )  = &re6 In A n2(3cw,2)-l(2r~-kT-)-312(1 - w,,2/0:)-1/~ (8) 
where c and 0; are the speed of light and the laser frequency (1.78 x 101j sec-I) and 
In A is the coulomb logarithm. The effective plasma frequency, cope, depends on the 
classical plasma frequency and the local laser intensity I(r, t )  as expressed by the 
relativistic correction (KAW and DAWSON, 1969) 

cup: = w:[1 - 377I(r, t)(e/m-~)~]-l 

w,2 = 4.iie2n/m-. (9) 
The thermal conductivities can be expressed directly in terms of the temperatures 

as (DAWSON, 1964) 
K- = 1-27 X 104(T-)5’2 
K+ = 2.96 x 10-6(T+)5’2 (10) 

(all units in this paper are in c.g.s. with temperatures in OK), whiIe energy transfer 
depends on the relaxation time 

T = 53.1 n-1(T-)3/2. (1 1) 

I 
I 

I I 
0 1.0 2.0 

t /  t, 

FIG. 1.-The pulse shape +(t) as a function of normalized time t / tr .  
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In order to study the fundamental dynamics of the plasma, several interesting 
plasma effects and laser-plasma interactions have been omitted (indeed, some of 
these cannot be modeled in a one-dimensional code). These include the electromag- 
netic stresses and self-focusing, non-linear coupling and anomalous absorption, 
recombination, and thermoelectric effects. Alpha particle heating and Bremsstrahlung 
losses are negligible compared to the plasma energy densities considered here, and 
these have also been omitted. 

We have restricted our attention to a spherically symmetric plasma where all 
variables are functions of time and the radial coordinate only. The computational 
space is divided into concentric shells of thickness AY to which we apply a two- 
temperature, one-dimensional version of the Fluid-in-Cell model of GENTRY (1 966). 
In this mixed Euler-Lagrangian scheme, all variables are first advanced in time using 
finite difference analogues of the momentum and energy equations. Central differ- 
ences for spacial derivatives are referred to the Eulerian grid of concentric shells, and 
the transport terms, u(a/ar), are omitted completely at this step. Later, these terms 
and the missing continuity equation are accounted for by the Lagrangian transport of 
fluid across shell boundaries. 

This computational scheme plus a number of specialized techniques have been 
incorporated into the computer code LPP-1 to create a numerical model of a freely 
disassembling, laser produced plasma. The complete details of this model, including 
the selection of space and time steps, can be found in GOLDMAN (1971). As noted 
there, it is possible to develop two codes, one for explicit and one for implicit handling 
of heat conduction-the choice depending on the step size selected and the peak 
- electron temperatures anticipated (see Fig. 1 of GOLDMAN (1971) and the related 

discussion). Were, we use the fully implicit code. 

3. PLASMA DYNAMICS 

A prepulse from the laser converts a pellet of frozen deuterium into a spherical, 
fully ionized plasma with the density profile in Fig. 2 (see LEISING et al. (1972) for a 
discussion of prepulse vaporization of solid targets). It is convenient to normalize the 
density to no, the number density of the deuterium ice (no = 4 x cm-3). The 
profile consists of a high density core or radius rC surrounded by a low density tail 
of thickness r t .  We specify the plasma by referring to these two radii, e.g. a 
100 p/100 p plasma is one with a 100 ,U radius core surrounded by a 100 p tail for a 
total radius, r,, of 200 ,U. 

A low density tail is necessary to promote energy absorption from the laser which 
is assumed to uniformly illuminate the surface of the plasma. For laser intensities 
below 10 I7W/cm2 and a laser wavelength of 1.06 x lo* A, equations (8) and (9) 
indicate that there can be no absorption for normalized plasma densities greater 
than 0.0248. In the plasmas considered here, the tail is specified to have the parabolic 
profile such that 

n(r,)/n, = 0.0248 

n(ro)/no = 0.00248 

dnldr = 0 r = r,. 
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RADIUS 

FIG. 2.-Sketch of the initial normalized density profile as a function of radius. The 
core radius, r,, plasma radius ro,  and tail thickness rt have been indicated. 

Normally, reflection from the discontinuity at r = r,, should be taken into account; 
however, we assume that the plasma density disappears smoothly between r, and 
ro 4- Ar)  and this behavior cannot be resolved on the finite difference grid. 

Plasma electrons absorb energy from the laser by inverse Bremmstrahlung, but 
this radiation can propagate only as long as the laser frequency is greater than the 
local plasma frequency. Absorption is enhanced when the electrons are driven to 
velocities near the speed of light where the relativistic correction in equation (9) shows 
a decrease in the local effective plasma frequency. Very large increases in absorption 
can occur when the electron density is just slightly less than the cut-off in equation (8). 
On the finite difference grid, complete reflection occurs at the outer surface of the 
first overdense shell and there is a possibility that additional energy may be absorbed 
from the reflected beam. 

When the electrons in the tail have been heated to 106-lG7 OK, the ability of the 
plasma to absorb more energy decreases rapidly. However, the tail does not become 
completely transparent to the radiation, i.e., reduced absorption does continue to 
two rise times because part of the electron thermal energy is steadily drained away 
by collisions with the cold ions, by transformation into kinetic energy and by 
thermal transport into the high density core. 

The energy in the electron thermal mode within the core drives an imploding 
spherical heat front. We can estimate the velocity of this front at any instant by con- 
sidering electron thermal transport. The energy transported across unit area in unit 
time at a velocity VT is $nkT-VT. Equating this to the thermal transport, A@'-/&), 
where A = e(T-)'/' is the electron thermal conductivity, gives 

and we now take VT as measure of the frontal velocity where T- and aT-/ar are 
measures of the electron temperature and its gradient at the front. 

A local velocity gradient is established by the temperature gradient in the thermal 
front. This velocity gradient will, in turn, establish a density perturbation which 
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can be estimated from the mixture continuity equation 

Integrating along a particle path, 

where p and U are the density andvelocity of the ion-electronmixture (au/ar is negative). 
Both aular and aT-/ar will be non-zero only over some length I, which is a measure 
of the width of the thermal front. If 0 is a measure of the velocity imparted to the 
mixture behind the front, then from (15), ( U/Z,)-l is a measure of the time necessary to 
establish a density perturbation. ( V,/lf)-l is a measure of the time required for the 
passage of the thermal front and the time for which the gradients are non-zero at a 
given point. If V,  > 0, no perturbations can form. 
0 can be estimated from the momentum equation (1) 

from which viscosity and density gradients have been omitted. R is the mixture gas 
constant and T the mixture temperature T = (T+ +- T-)/2 N T-/2 (the ions at the 
front are cold). Integrating from rest following a particle and again using the fact 
that 8 T - p  is non-zero only over If, 

If aT- /ar  N T-/Z,, the thermal frontal velocity and the velocity behind the front 
can coincide only at the isothermal mixtcrre acoustic velocity 

U, = (RT)l12 (1 8) 
A thermal front can therefore exist only as long as there is sufficient energy behind 

it to maintain V, > U,  and this type of behavior occurs only in media with non- 
linear thermal conductivities (ZELDOVICK and RAIZER, 1966). When the frontal 
velocity has become acoustic, the density perturbation can amplify, and a converging 
hydrodynamic shock front forms. The transition from thermal to shock behavior can 
be estimated from (13) and (18) 

V,/U, = [~e/nk(R/2)”2Zf](T-)2 = 3.38 x 10-15(T-)2 (19) 

where we have used T-/I, as a measure of aT-/ar and have set I, = 5 p and n = no. 
Electron temperatures on the order of 2 x lo7 OK are required to maintain these 
thermal fronts. 

Assuming a uniform temperature distribution throughout a 100 ,a core, this 
resnlt requires that 72.8 J be in the electron thermal mode if the thermal front 
is to reach the center of the plasma. If 70 per cent of the absorbed energy (see 
Table 1, column 7) is contained in the thermal mode, then for absorbed energies 
greater than 104 J, no shocks will fcrm. This figure compares favorably with the 
results of the next section. 
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TABLE I.-sUMMARY OF DATA FOR 30 EXPERIMENTAL CASES. T.D. DENOTES A THERMALLY DOMI- 
NATED CASE, * A CASE RUN ONLY TO OBTAIK A POIXT ON THE ABSORPTION CURVE FIG. 9 AND ** A 
CASE RUN ONLY TO OBTAIN A POINT ON THE SHOCK SPEED PARAMETER CURVES FIGS. 14 AND 17 

%E, in 
Case rclrt Po E E, Thermal E #Neutrons 
ii' PIP Watts Joules Joules E mode m/sec% produced 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

lOOj50 
l00/50 

l O O / l O O  
l O O / l O O  

l O O / l O O  
l O O / l O O  
I OO/lOO 
l O O / l O O  
l O O / l O O  
l O O / l O O  
1 OO/lOO 
l O O / l O O  
roo/loo 
l O O / l O O  
l O O / l O O  
100/100 
1 OO/lOO 
200/lOO 
200/100 
200/100 
200/200 
200/200 
200/200 
200/200 
200/200 
300/300 
300/300 
300/300 
300/300 
300/300 

1.52 x 1014 
7 5  x 1014 
1.0 x 1013 
3.3 x 1013 
5.0 x io13 

1.25 x 1014 
1.5 x 1014 

2.6 x 1014 
3.0 x 1014 
4.5 x 1014 

7.7 x 1014 
9.0 x 1014 
1.0 x 1015 

1.0 x 1011 

2.25 X 1014 

6 X 

1.2 x 1015 
1.21 x l0l5 
3.0 x 
6.0 x IO1' 
8.0 x 1014 
2.0 x 1015 
2.6 x 1015 
2.9 x 1015 
3.8 x 1015 

9.16 x 1015 
2.7 x IO1' 

1.0 x 1016 
1.13 x 10l6 
1.3 x 

2008 
9950 

132 
43 7 
662 

1321 
1655 
1990 
2985 
3446 
3971 
5961 
7351 

10221 
11940 
13206 
I5900 
16100 
39708 
79507 
10583 
26503 
34462 
38442 
50291 
35729 

121206 
132060 
149246 
171859 

32.3 
11 6.4 
10.7 
20.1 
26.8 
40.0 
46.5 
50.5 
6 6 0  
73.1 
89.7 

101.8 
134.4 
160.5 
177.6 
191.5 
208.5 
328.4 
706.8 

1296.0 
426.5 
771.2 
927.0 

1026.4 
1191.9 
771.2 

3733.1 
3961.8 
4522.2 
4880.5 

1.61 
1.17 
8.07 
4.76 
4.04 
3.03 
2.81 
2.54 
2.21 
2.12 
1.96 
1.71 
1.69 
1-57 
149  
1.45 
1.31 
2.04 
1.78 
1-63 
403 
2.91 
2.69 
2.67 
2.37 
4.69 
3.08 
3.00 
3.03 
2.84 

62.0 
74.1 
36.7 
48.5 
52.9 
58.8 
61.0 
61.9 
64.6 
66.5 
68.7 
69.7 
72.3 
73.4 
73.8 
73.9 
74.3 
72.3 
78.8 
82.1 
66.4 
72.2 
74.3 
75.4 
76.8 
69.2 
77.3 
77.3 
78.6 
79.0 

273.8 3.2 X IO6 * 
165.7 2.0 x 103 
227.5 1.9 x 105 
248.5 1.1 X IO6 
297.4 7.9 X lo6 
305.4 * *  
3196 2.1 x lo7 
341.5 ** 
346.4 
345.1 6.9 x 10' 
343.6 6.9 X IO' 

** 

T.D. 5.2 x 107 

T.D. 2.7 x 107 

T.D. 1.8 x 107 

* 
* 

381.1 ** 
451 *8 ** 
451.9 ** 
391.3 3.9 x IO8 
468.1 ** 
479.4 * *  
469.8 3.6 x lo9 
483.4 ** 
562.0 ** 
569.7 ** 
573.1 ** 
565.3 4.1 X l O l o  

481.9 3.7 x 109 

4. THE NUMERICAL EXPERIMENT 
We have used the fully implicit version cf the LPP-1 code to perform the series of 

numerical experiments listed in Table I .  The second column is the plasma specification, 
Po is the peak power in watts, and E is the total laser energy in the cut-off modified 
Gaussian pulse in joules. All of the cases are for a rise time of 10 psec. 

Assuming that a prepulse has established the density distribution of equation (12), 
we turn on the main pulse of Fig. 1 at t = 0 and begin heating the tail electrons as 
described in the previous section. It was noted there that when the electrons in the 
tail have been heated to 106-10' O K ,  the ability of the plasma to absorb more energy 
decreases rapidly. Figure 3 shows the percent absorption of energy from the laser 
as a hnction of time, and the net energy absorbed, E,, and the percent net energy 
absorbed, 100EJE are shown in Table 1. For plasmas with the same ratio of tail 
thickness to core radius, a scaling can be developed to predict E, as discussed in the 
next section. We note that the amount of energy absorbed can probably be optimized 
by pulse tailoring, but such considerations are beyond the scope of this paper. 

Transfer of energy to the cold ions, transformation of thermal energy into kinetic 
energy of expansion and transport of energy into the electrons within the core allow 
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N9RMAL' iED TIME t / t ,  

FIG. 3.-Per cent absorption as a function of normalized time, tit,, for 4 cases. (Case 
13 is shown by a broken line for clarity only.) 

the absorption process in the tail to continue as long as the laser is switched on. 
An investigation of the state of the plasma at  two rise times reveals that most of the 
absorbed energy is now in the electron thermal mode in the core. Since the original 
interface between the core and the tail becomes somewhat diffuse, the core is redefined 
as all of the plasma within a radius r,  of the center, regardless of its density. The 
percentage of the absorbed energy in the core electron thermal mode is listed in the 
seventh column of Table 1. 

The energy in the core electrons drives the imploding spherical front. When the 
frontal velocity has become sonic, the density perturbations become pronounced and a 
converging hydrodynamic shock wave forms. Convergence effects strengthen the 
shock and its velocity eventually becomes compression limited. Any case for which 
the compression ratio (density ahead of the shock to the maximum density) reaches a 
value of 4 before the shock reaches the center is referred to as shock dominated. 
The density and temperature profiles for a representative shock dominated case, 
no. 3, are shown in Figs. 4 and 5 at 20, 100 and 560 psec, (a slight numerical instability 
has been smoothed out of the ion temperature curves near r = 100 ,U at 20 and 100 
psec). Here the thermal front rapidly transformed into a shock front strengthened 
by both convergence and the temperature gradient. Behavior typical of the shock 
dominated cases can be seen in the temperature profiles at 100 psec; the ions and the 
electrons are heated to the same temperature by the shock while the electrons behind 
the shock are further heated by laser energy carried by electron thermal transport 
(the inflection in the curve is a convergence effect). In this particular case, so little 
energy was available and the shock velocity was so low that the plasma became 
one temperature at  450 psec. Other shock dominated cases at higher energies con- 
tinue to show two temperatures behind the front until it collapses at the center. 

Collapse of the shock wave on the center causes large increases in density and 
temperature. These peaks decay rapidly as the expansion which has been following 
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RADIUS ( M I C R O N S )  

29 7 

D 

FIG. 4.-Normalized density distribution as a function of radius for case #3 at 20, 
100 and 560 psec. 

FIG. 5.-Electron (T-) and ion (T+) temperature distributions as a function of radius 
for case #3 at 20, 100 and 560 psec. 
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both the thermal and shock fronts gains the center, and, from this point, the plasma 
cools rapidly with relatively uniform temperatures. The total neutron production to 
time t is given by 

t 
N =Ivo, 1 & ~ ~ ( ( a a / > , , ,  dt dvol 

where G is a reaction cross section and V the relative velocity of approach. For a 
Maxwellian distribution of ion velocities about a temperature T+ and deuterium- 
deuterium reactions this becomes (ARTSIMOVICH, 1964) 

x exp [ -18.76 x (,”“’ 107)7 dtdvol (21) 
T‘ 

Nis shown as a function o f t  in Fig. 6 for case no. 12. The jump in the curve coincides 
with the collapse of the shock on the center. 

TIME IPICOSECONDSI 

FIG. 6.-Net neutron production as a function of time for the shock dominated case 
#12 and the thermally dominated case $15. 
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T-30 PICOSECONDS 

f 

I I I I 1 1 
20 40 60 80 100 120 140 

RADIUS (MICRONS1 

FIG. 7.-Electron (T-) and ion (T+) temperature distributions as a function of radius 
for case #15 at 20, 30 and 40 psec. 

If the energy densities are high enough, either no shock will form or if one does, 
it wiii not reach fuii strength (i.e. density ratio 2 4) before collapse. We refer to these 
as thermally dominated cases. The temperature profiles for case no. 15, which is 
typical of those with no shock formation, are shown in Fig. 7 at 20, 30 and 40 psec. 
Note that the electron temperatures remain above those estimated in the last section 
to be required for maintenance of a thermal front. Here the electrons are heated 
ody by thermal transport of energy from the laser and the ions only by the slow 
(compared with the transit time of the front) process of ion-electron collisional 
transfer. Energy equilibratior? between the species is poor until the convergence 
effects at the center can create a moderate density enhancement which aids the ex- 
change process as seen from equation (11). A moother neutron production carve 
is found in the thermally dominated cases as shown in Fig. 6 for case 15. 

A plot of neutron production vs absorbed energy is shown in Fig. 8 for the 100 ,U 

core plasmas. The maximum in the curve occurs at about 80 J while the transition 
from shock dominated to thermally dominated cases occurs at about 108 J as pre- 
dicted in the last section. In  order to  understand this result, we have developed a 
simple model of neutron production in the shock dominated cases. This is presented in 
Section 6. The analysis of the behavior of the thermal and shock fronts and the trans- 
ition from one to the other is given in Section 7 and these results along with those of 
Section 6 are used to interpret the last figure. An additional scaling is discussed in 
Section 8. 

5 .  ABSORPTION 
We can derive a simple expression to relate the amount of absorption in two 

plasmas with the same ratio of core radius to tail thickness. In any plasma, the 
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I I I I 
50 100 150 200 250 

ABSORBED ENERGY ( J O U L E S  1 

FIG. &-Neutron production as a function of absorbed energy for cases with a 100 ,U 
radius core. 

energy that can be placed in the thermal mode of the tail electrons is limited by trans- 
parency at high temperatures. Except for the earliest stages of heating, the electrons 
exist in a state where further absorption is possible only if some of their thermal 
energy is siphoned off by ion collisions, transformation into kinetic energy or trans- 
port into the dense, non-absorbing core. Further absorption then maintains the level 
of thermai energy against depletion. Since the energy level varies with the current 
input, we express these conditions as 

4 r C r 2 n ( r ,  t)[*kT-(r, t)]  dr  

where n(r,t) and T-(r,t) are the electron density and temperature prof3es in the 
tail r, I r I ro, and the absorption coefficient of equation (8) is rewritten as 

1"" h e 2  [ m-w; 
~ ( r ,  t )  = <n2(r, t)[T-(r, t ) ~ - ~ / ~  1 - - n(r, t )  

(the factor of 2 accounts for reflection). The relativistic correction has been eliminated 
from (15) because of the relatively low intensities considered here. It is convenient 
to non-dimensionalize the radial coordinate 

r' = r/roy IC' = rJr0 
so equation (22) becomes 

The time scale for the trznsport of energy by electron thermal transport within 
the tail is (DAWSON, 1964) 

T~~ = 1.57 x 10-lo(ro - rC)2n(T-)-5/2. (26) 
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For a density of 0.02n0, a temperature of 2.2 x IO7 "K and (ro - r,) = 0.01 cm, 
Thhc N 4.5 psec and we therefore assume the electron temperature to be uniform 
through the tail and varying with time only. Similarly, since the maximum observed 
velocities during the first two rise times are on the order of lo6 cm/sec, no part of the 
plasma can be displaced more than 0.1 p, and we treat the initial density profile as 
stationary in time. 

Figure 3 illustrates the rapid decrease of absorption of laser energy in four cases. 
Although most of the laser energy is contained in the pulse between 0.455 t ,  and 2 t, 
(see Fig. l), only a small percentage is being absorbed for t 2 0.455 t,. The expon- 
ential in equation (25) can be expanded for small values to yield 

This equation will give incorrect results for the early stage of heating, but the total 
amounts of energy absorbed there are small and do not contribute significantly to the 
final total. 

Consider two plasmas with radii rol and rO2. Let rcl/rol = rC2/ro2, which implies 
equal values for the corresponding integrals from equation (27), and let T,-(t) and 
Ti-(t) be the uniform electron tail temperatures. Writing equation (27) for each of 
these plasmas and dividing, we obtain 

If El and E2 are in the proportion r o , 3 : r o ~ ,  then 

Tz-(t)lT1-(t) = (rozlroJ"/". (29) 
Since (29) must hold at each instant of time (again excepting the very early stages of 
heating), it follows that 

% absorption in plasma 2 
% absorption in plasma 1 

We have used the percent net absorption in the 100 ,uU/lOO ,u plasmas to construct 
the curve in Fig. 9 and the other cases with rc/rt = 1 have been displayed as numbered 
points. The 200,4200 p and 300 p/300 p cases, with energies and per cent absorp- 
tions reduced by 2", 3-3, 24'4 and 3-0'4 respectively, are in excellent agreement 
with the 100 p/lOO ,u curve. We did not run enough cases to determine a 100 pi50 p 
base curve, but reduction of the energies and per cent absorptions of cases 18 and 
20 by 2-3 and 2-0'4 gives good agreement with the corresponding quantities of cases 1 
and 2. 

These results allow us to compute the percent absorption in a plasma given the 
experimentally determined base curve. The results obtained in this section depend 
directly on the classical description of the absorption process that has been incorpor- 
ated into the numerical model. In the following sections, the discussion will be seen 
to depend on the magnitude of the absorbed energy. While the dependency of E, 
on E will vary with the description of absorption, such changes cannot influence 
results stated in terms of E,. 
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6. N E U T R O N  P R O D U C T I O N  MODEL 
The results in Section 4 indicate that neutron production is stimulated by the 

collapse of the shock on the center (see Fig. 6). In this section, we idealize the be- 
havior of the imploding shock wave and follow its dynamics by reconstructing the 
analysis of GUDERLY (1942). A model of neutron production is constructed from the 
resulting time histories of the pressure and densities through the incorporation of 
equation (21). 

NORMALIZED TIME t/t, 

FIG. 10.-Electron temperature as a function of normalized time for the tail in case 6. 
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Every spherical shock wave is characterized by a number 5 ,  the shock speed param- 
eter, which is a measure of its potential amplification by convergence. For sufficiently 
small radius, the trajectory of the front is expressed as 

where time is negative and increasing before collapse ( t  = 0 at collapse). Equation 
(31) is used in a similarity argument to reduce the continuity, momentum, and energy 
equations for a perfect, inviscid, non-heat conducting gas to ordinary differential 
phase-plane equations. The actual details of this reduction and the integrations are 
too lengthy to reproduce here, but a complete description is found in GUDERLY 
(1 942). 

Physically, we think of an infinitely strong shock wave contracting into an undis- 
turbed uniform medium of density po and zero pressure (a standard approximation). 
The jump conditions across the shock are 

r = 6 (31) 

P J P O  = (7 + l>/(r - 1) 
U, = 20/(y + 1) 
p1 = 2P,772/(y + 1) 

(32) 

where ( )1 denotes conditions behind the shock, y is the ratio of specific heats, and 
D is the frontal velocity 

After collapse, a new discontinuity is generated which expands from the center. 
Increasing values of p and p are found behind the contracting front, while relaxing 
profiles are seen behind the expanding front. 

A detailed study of the phase-plane is necessary in order to carry out the integra- 
tions subject to the initial conditions (32). This is possible for the spherical problem 
and y = + only if the exponent in (31) is 0.688377. The resulting curves ofp/poD2 
and p/po as functions of f/lfcl are shown in Figs. 11 and 12 (Guderly's results are for 
y = $1 where 1 to] is the time at which the imploding shock first passes the observation 
point r*. For all positions, the shock passes to the origin at t/ltol = 0 and the re- 
flected discontinuity again reaches r* at t/lfol = 1.59. 

(33) 0 = = -fi[lIfir1-1Ifi. 

I 5 r  

PIP-:! 

O U  I 

t' ltol 

FIG. 11.-Normalized pressure as a function of f/!fo[ at the observation point r* from 
the shock dynamics analysis. 
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FIG. 12.-Normalized density as a function of t/ltol at the observation point ?* from 
the shock dynamics analysis. 

To construct the neutron production-shock speed parameter curve, we select 
values of 5 and calculate the corresponding values of jtol and from equations (31) 
and (33). The plasma is divided into shells of thickness Ar with mean radius YO, 
and p*/po and p*/p0lJ2 are selected from the tabular solutions of the phase-plane 
equations. If we now assume that the medium into which the shock propagates is 
an equal mixture of ions and electrons, the ion densities and temperatures become 

n = n+ = nop*/p T+ = (p*/p002)(p0/p*)(m+/2k)02. (34) 

(3 9 
The last factor of 2 arises from the relations 

where m, is the averaged particle mass of the ion-electron fluid. n and T+ are sub- 
stituted into equation (21) for D-D reactions and the results are integrated over time 
and space to obtain the net neutron production curve of Fig. 13. 

We can calculate a value of 5 for each of the shock dominated cases by tabulating 
the position of the front, defined as the location of (n,,, + n0)/2 as a function of 
time. Since this time is measured positively from the start of the laser pulse, equation 
(31) is rewritten as 

(36) 
where t, is the time of collapse. A best fit value of 5 is found and these are listed in 
column 8 of Table 1. 

Total neutron production in the cases run to completion has been indicated in 
Fig. 13, and the agreement with the model curve is excellent. This result can be 
interpreted as follows: the laser pulse creates a strong thermal disturbance which in 
turn initiates a strong shock characterized by the parameter E .  Once the shock 
reaches full strength, the laser and thermal effects are no longer important compared 
with the convergence. Since a purely hydrodynamic model, without transport 
processes, can predict the output to such a high degree of accuracy, we can conclude 
that the attenuation of the wave by viscous effects must be negligible and that the 
increased electron temperatures behind the shock (due to thermal transport of laser 
energy) has a negligible effect on ion temperature. 

po = no(m- + m+) = 2n0m,, m, = (mf .t m-)/2 ri m+/2 

r 5 1 t - t,[ 0'6883i7 
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FIG. 13.-Neutron production from the sbock dynamics analysis model as a function 
of the shock parameter E .  Comparison cases from Table 1 are indicated. 

7 .  ANALYSIS OF NEUTRON PRODUCTION 
We use the results of the last section to explain the behavior of the neutron pro- 

duction curve in Fig. 8. Figure 14 shows the shock speed parameter as a function of 
absorbed energy for various core radii (note again that these curves are independent 
of the absorption mechanism and the tail thickness). The value of 5 associated with 
a shock depends both on its radius and on its velocity when it reaches full strength 
as seen by solving equation (33) 

5 = (- lJ/fi)"frl-fi (37) 
where (") denotes conditions just at full strength. At first there is an increase of 
l with E, because the thermal front decays into a shock wave at  increasingly higher 
sonic velocities. Although these sonic velocities, and, by convergence, 0, continue 
to increase with E,, the thermal effects become more persistent, and the point of 
decay is eventually postponed long enough to decrease both i and 5. 

Since neutron production varies monotonically with the shock speed parameter 
in Fig. 13, and since 5 shows a maximum as a function of E, in Fig. 14, we expect the 
neutron production curve to peak in the shock dominated region of Fig. 8. Further 
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increases of E, lead to thermally dominated behavior where either the transition is 
delayed so long that the shock cannot reach full strength or the transition cannot 
occur at all. The continued negative slope of the neutron production curve can be 
understood from the following simple arguments. 

If we substitute V, from equation (13) into (17), we obtain 
(T-)-3/2 

I 
(3 s> 

ABSORBED ENERGY (JOULES)  

(a) 

I I I I I I 350 
400 600 800 1000 1200 1400 

ABSORBED ENERGY (JOULES) 

(b) 
FIG. 14.-Shock speed parameter as a function of absorbed energy from the experi- 

mental data (a) r, = 100 p, (b) rc = 200 p, (c) rc = 300 p. 
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FIG. 15.-Maximum values of the normalized density as a function of normalized time 
for cases #15 and #17. 
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FIG. 16.-Aveiaged ion teniperature as a function of normalized time for cases #15 
and #17. 

8. SCALE ANALYSIS OF E 
Let E,, and EaZ be the absorbed energies in two plasmas with core radii r,, and 

rcz,  and let 7; = 7Jrc1 and 7; = T2/rc2 be the non-dimensional radii at which the 
respective heat fronts decay to shock fronts. The corresponding sonic velocities would 
then be in the ratios 

Ua2:U,, = (T2->1/2:(T1-)1/2 = [Ea2/rC23(1 - Fi3)I1I2: 

[Eal/r,,3( 1 - ?i3)]1/2. (39) 

Eal:Ea2 = r C l 3 : r c ~  (40) 

Since the results of Section 3 require that U,, = Ua2, the proportionality 

reduces equation (39) to ?< = 7;. 
We can obtain a relation between the density, frontal velocity and radius at the 

transition from thermal to shock behavior and those at full strength by following the 
motion of the front. Ignoring changes purely with respect to time, the continuity 
equation (14) gives 

where p is equal to the original solid density and, by definition, f i  = 4p. Since 
U,, 7, p ,  and $ are the same for any two plasmas, equation (41) leads to 

f i  l . p 2  = p U,+ (41) 

8,i,’2 = 02?;? (42) 
Because the normal shock relations hold locally at each point of a curved shock, there 
exists a unique relation between 8 and $ just up to the time at  which we apply our 
full strength assumptions (i.e. before we impose equations (32)). The fact that f i  
is the same for any two plasmas then implies that O1 = o2 and, from (42), Fl’ = i2’. 
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The ratio of shock speed parameters for two plasmas is formed from equation (37) 

Using the results obtained above and n = 0.688377, equation (43) reduces to 

Figure 17 shows the curves of Fig. 14 reduced to a 100 ,U base curve through equations 
(40) and (44) (e.g. for case 18 with Y, = 200 ,U, the absorbed energy and 5 are reduced 
by 23 and 2°'311623, respectively). Excellent agreement is seen on the common portions 
of the curve. 

A slight modification of the similarity analysis of ZELDOVICH and RAIZER (1966) 
shows that as long as (40) holds, the sudden addition of heat at the surface of a 
sphere leads to vT2:  VT, = Y , ~ :  rC2. If V,, > VTI,  this requires i,' > i: since a smaller 
value of VT means faster decay from the thermal to the shock mode. We can antici- 
pate, then, that there will be cases for which (40) holds, but where the smaller plasma 
will be thermally dominated while the larger will be shock dominated. Equation (44) 
can therefore be expected to hold only as long as 5 _< 

Although we do not have the data to extend this curve, the scalings (40) and (44) 
would allow us to run a single series of experiments for a large particle, say one with 
rc = 2000 ,U, and then to calculate the corresponding E, and 5 for smaller plasmas. 
The absorbed energy reduced by (rJ100 ,u)~, at which maximum 5's occur are shown 
in Fig. 18 for core radii of 100,200 and 300 ,U. If this linear relation holds for larger 
r, ,  we can then determine the optimum shock dominated neutron output for any 
plasma with rc I 2000. 

for both plasmas. 

0 100 I50 200 2 

REDUCED ENERGY ABSORBED (JOULES1 

FIG. 17.-Shock speed parameter as a function of absorbed energy. E and E, for the 
r ,  = 200 ,U and r, = 300 ,U cases have been reduced as explained in Section 8. All points 

have been numbered as in Table 1 and Y,, in microns, has bsen indicated. 
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I 1 I I 1 

100 200 300 400 500 
CORE RADIUS rc [MICRONS] 

FIG. 18.-Reduced absorbed energy at maximum [ as a function of r, showing the 
linear dependence for the three data points. 
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