DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

THIN METALLIC LINERS FOR HOHLRAUM

<u>S. LE TACON</u>, K. MOLINA, G. DE DEMO, R. BOURDENET, R. CALAND, R. BOTREL, C. CHICANNE, M. THEOBALD

23th Target Fabrication Meeting

23-26 April 2019

I. CONTEXT

- **II. LINERS FABRICATION**
- III. RESULTS
- **IV. CONCLUSION**

<u>CONTEXT</u>: Change hohlraum albedo (completely or locally)

STUDY OF NEW KIND OF HOHLRAUM

FABRICATION SYNOPTIC

FULL LINER

LOCALIZED LINER

ELECTRON BEAM EVAPORATION OR MAGNETRON SPUTTERING

Evaporation configuration

Evaporation is well adapted for material with low vapor pressure (e.g. **copper**)

Evaporation chamber

Examples of aluminum and brass mandrels

Sputtering configuration

Sputtering is useful for material with high vapor pressure (e.g. **titanium**)

THIN METALLIC COATING FROM 1 µm TO 3 µm ON METALLIC MANDREL

□ COPPER LINER IN GOLD HOHLRAUM

FEASIBILITY OF COPPER FULL LINER IN GOLD HOHLRAUM IS DEMONSTRATED 6

COPPER FULL LINER RESULTS

Observations:

- few porosities are observables in zone 1 and 3 (shadow effect)
- microstructure is well dense in zone 2
- > thickness is well uniform: 1.7 μ m ± 0.2 μ m (12%)

FEASIBILITY OF COPPER FULL LINER IN GOLD HOHLRAUM IS DEMONSTRATED 7

Ti cross section (FIB-SEM)

Ti coating is well dense and thickness is uniform along the hohlraum

FEASIBILITY OF TITANIUM FULL LINER IN PLASTIC HOHLRAUM IS DEMONSTRATED

FABRICATION SYNOPTIC

Characterization

Excimer ArF laser (193 nm, 350mJ/pulse, rate 50 Hz)

4 motorized axis (X,Y, Z, Θ)

2 rings (width~400µm/360°)

4 spots (\emptyset 800µm) on the equator

SELECTED ABLATION OF SACRIFICIAL POLYMER LAYER

cea

LOCALIZED LINER RESULTS

CONTROL OF STEP HIGHER BY OPTICAL INTERFEROMETRY

(polymer is lightly colored)

COPPER RINGS ARE COMPLETE (w=400µm and t=1.6µm)

CHARACTERIZATION OF LOCALIZED LINER IS NOT A PROBLEM

LOCALIZED LINER RESULTS

Cu rings on Al mandrel

(w=130µm/360°)

Gold plating (30 µm) and aluminum chemical attack

Localized rings of Cu in Au hohlraum « copper rings still present but partially dissolved »

Ti rings on brass mandrel

CHON thermosetting resin and mandrel chemical attack

(w=400µm/360°) Localized rings of Ti in CHON hohlraum « *Ti rings are well transferred but a weak adherence is observed at Ti/CHON interface*»

FEASIBILITY OF <u>FULL</u> LINER IS DEMONSTRATED:

- **Cu 1.7 μm thick in Au hohlraum:** *yield* 30%
- > Ti 2.5 µm thick in CHON hohlraum: yield 100%

FEASIBILITY OF LOCALIZED LINER HAVE TO BE CONSOLIDATED:

- > Cu in Au hohlraum: partially dissolved
- > Ti in CHON hohlraum: partially peeled-off

PERSPECTIVES:

- Increase yield in case of copper: [HCI], T°, mandrel nature, …
- Improve adhesion at Ti/CHON interface: stress, ion gun treatment, primer coating, …
- > Development of a non-destructive method to control liner: X-ray tomography, ...
- > Aging and environment stability studies

Thank you !

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Valduc 21120 Is sur Tille T. +33 (0)3 80 23 53 01 F. +33 (0)3 80 23 52 77	DAI DTF SM
--	------------------

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019