Engineered Defect SNL Targets

K. Tomlinson,¹ R. R. Holt,¹ W. D. Tatum,¹ T. Awe,² Edmund P. Yu,² R. R. Paguio,¹ H. Huang,¹

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608 ²Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185-1168

> 23rd Target Fabrication Meeting Annapolis, Maryland April 23-26

This work performed under the auspices of the U.S. Department of Energy by General Atomics under Contract DE-NA0001808, by Sandia National Laboratories under Contract DE-AC04-94AL85000.

Fusion In Magnetically-Driven Z Pinches Is Reduced By The Magneto-Rayleigh Taylor (MRT) Instability

Since the 1950s, much z-pinch research has been rooted in understanding and mitigating MHD instabilities.

Imploding Be liner on Z

(a) Experiment

R.D. McBride *et al.*, PRL 109, 135004 (2012)

Simulations Of Imploding Liners Match Experiment Only When An Artificial Azimuthal Seed Perturbation Is Added

R.D. McBride et al., PRL 109, 135004 (2012)

What seeds the unexpected large amplitude and azimuthally symmetric MRT?

A 2013 Z-Campaign Evaluated Turning vs. Axial **Broaching To Determine Effect Of Initial Surface Texture**

Modified Fabrication Process: Changing the orientation of the machining grooves from azimuthal (lathe) to axial (broaching) had little impact on MRT development. **CONCLUSION: INITIAL OUTER SURFACE TEXTURE IS NOT THE MRT SEED**

IFT/P2019-039

observed MRT

development

grooves, so

was initially

seed.

Could The Electrothermal Instability (ETI) Provide The Seed For the MRT Instability?

2

ETI Theory:

- 1. Near inclusions, current is amplified, causing hot spots.
- 2. Conductivity decreases with increasing T, so a feedback loop results, causing runaway hot spots.

Experiments At U of Nevada, Reno Zebra Facility Support The Theory That Surface Defects Cause Hot Spots

Axes Units: µm

The number of emission (hot) spots is comparable to the number of surface inclusions.

T.J. Awe et al., IEEE Trans. Plasma Sci. 45, 584 (2017)

Experiments At Zebra Also Agree with Computer Simulations Predicting Azimuthal Merging Of Hot Spots

Simulation Graphics Coutesy of Edmund P. Yu Sandia National Laboratories (2019)

Targets For SNL Mykonos Facility Will Have "Engineered Defects" In Various Patterns To Probe ETI Evolution

- Targets will use pits because they exhibit qualitatively similar behavior to inclusions and are easier to machine.
- Pit size doesn't significantly affect physics, so they will be larger than common inclusions for ease of machining and diagnosis.

Target With Engineered Defects

All Machining Is Completed In One Setup

φ¹/₄" x 1-1/8", 99.999% Pure Aluminum Rod Mounted In Collet In Precitech FF-700 Lathe (4/5-Axis)

#1 - Turn Profile In Lathe Mode

#2 - Cut Defects in C-Axis (STS) Mode

Defect Machining Strategy #1: Tool Rotates Around Defect Center

Defect Machining Strategy #2: No Tool Rotation

These Strategies Form Two Limiting Cases How To Choose Optimum Rotation Offset?

<u>Strategy 2</u>: No Tool Rotation (i.e., "Rotation Offset" = ∞)

Plugging Governing Equations Into Excel Reveals Satisfactory Defect Geometry and Rotation Offset

Single Crystal Diamond Tool For Cutting Divots

CLEARANCE~

- 30 degrees diamond relief is greater than minimum requirement of 26.6, resulting in 3.4 degrees clearance.
- 30 degree relief angle is near the limit of what is possible to produce on a single crystal diamond.

Machine Kinematics To Virtually Rotate Tool

Machine Cannot Rotate Tool So "Virtual Rotation" Is Performed Using Simultaneous Motion of X, Y, and C Axes.

Despite Unusual Motion, NC Program For Machining Defects Is Very Short

;this	s program ma	ichines a hemi-shaped divot							
;z-01	rigin is front	face							
;too	I faces opera	tor		-food					
;too	l must be cal	ibrated at tip	gi	;reed					
;lath	e must be in	c-axis mode (m27)	g14	; teed mode all axes					
,			g/1	;metric					
t5	a:	ick up tool offsets	g40	;cancel comp					
			g59	;cancel offset					
:cut	ting paramet	ers	m7.1	;tool 1 coolant on					
p1=.	.005	radial peck depth	m7.2	;tool 2 coolant on					
p2=.	.05	angular increment (degrees alpha)	g90	;absolute mode					
n3=	0244	tool rotation axis offset (n-l)							
n4-	1	retract distance	x25y0z25f2000) ;safe start point					
р т –.			z(p15)						
inor	t naramatara		while(p31>0)	;while # cuts remaining > 0					
,µai	1 parameters	ured rediue (P)	p31=p31-1	decrement cut counter;					
p11=	=J.	(rou radius (n)	p90=p90-p1	decrement stock level					
p12=	=.0244	; aivot spherical radius (r)	x(p25+p90)v(p2	26)c(p14+p22)					
p13=	=4	;divot dia/depth (B)	aosub 1000						
p14=	=0	divot clocking location (degrees)	x25						
p15=	=5	divot axial location	v(p26)c(p14+p2	22)					
_			n21=n20	reset to starting (alpha)					
;calo	culate divot s	start coordinates	n41=180/n2	reset (alpha) counter					
p20=	=90.000001	starting (alpha) to not divide by zero in p27 calculation;	endwhile	, ooor (alpha) oountoi					
p21=	=p20	;set (alpha) to starting (alpha)	v25v0z25	:safe noint					
p22=	=atan(p12*sir	n(p20)/(p3+p12*cos(p20)));starting (theta)	AZJYUZZJ a12	,sale point					
p23=	=p12*sin(180	-p20)/sin(p22);starting (d)	y is ovit	, leed mode x-y-z only					
p24=	=sqrt(p11*p1	1-p12*sin(p20)*p12*sin(p20))+p12*cos(p20);starting (L)	exit	;end of main pgm					
p25=	=(p3+p24)*co	s(p22)-p23 ;starting (x)	-1000						
p26=	=(p3+p24)*sir	n(p22) ;starting (y)							
-			while(p41>0)						
;calo	culate stock	removal and set cut counter	p41=p41-1	;decrement (alpha) counter					
p31=	=p12/p1		p21=p21-p2	;next (alpha)					
p31=	=fix(p31)		p52=atan(p12*	sin(p21)/(p3+p12*cos(p21)));next (theta)					
n31:	=n31+1	:set rough cut counter	p53=p12*sin(18	80-p21)/sin(p52);next (d)					
n90=	=n31*n1	set stock level	p54=sqrt(p11*p	p11-p12*sin(p21)*p12*sin(p21))+p12*cos(p21);next (L)					
p00-			p55=(p3+p54)*	cos(p52)-p53 ;next (x)					
·cot	(alpha) coun	ter	p56=(p3+p54)*	sin(p52) ;next (y)					
,3CL	(alpha) court -190/p2		x(p55+p90)y(p56)c(p14+p52);go to next point						
P41=	-100/pz		endwhile						
	والمراجع المستطعة		ret						
;wat	cn:p1=cut de								
:wat	cn:p31=cuts	10 Q0							

;watch:p90=stock level

Microscopic Images of Defect Pattern

2.5x

20x

100x Interferometer Scan of Defect

- Defect is ~28um dia. at surface and is ~7um deep which is about 4:1 as wanted.
- 2. Light is not received on divot sides due to angle too steep for objective NA.
- 3. Burr shown as semi-circles on left side of divots. Will be removed by subsequent turning operation in production run.

Confocal Scan of Defect

Summary

- Using Slow Tool Servo on a diamond lathe with X,Y, Z, and C Axis control, it is possible to create very precise arrays of tiny, semi-hemispherical pits.
- Machine motion and tool geometry are critical to the success of this approach and are interdependent.
- Depth of pits can only be controlled precisely if turning and pit machining are performed in the same setup.
- QUESTIONS???

Detail of Spherical Defects

Precitech Lathe Axis Layout

Derive Equation For h = f(B, r)

Define Basic Defect Parameters: $B = \frac{D}{h}$; r = Defect Radius

$$h=\frac{8r}{B^2+4}$$

Derive Equation For Machine's Rotation Axis $C = f(\propto)$

NC algorithm will calculate machine X, Y, and C for fine increments of a. All machine coordinates must be therefore be based on a.

Derive Equation For Machine Translation Axes X & Y = f(C)

Derive Equation For Tool Relief Angle = $f(\propto)$

$$t = \arcsin\left(\cos\frac{A-\alpha}{2}\right) - \alpha + \arctan\frac{r\sin\alpha}{P-L+r\cos\alpha}; \quad Relief = 90 - t$$

Input Equations Into Excel To Allow Optimization Of Variables

divot	divot	divot	divot	rod	divot	tool rot	tool rot	divot	C-axis	triangle			divot		
radius	dia/depth	depth	dia	radius	center	axis offset	axis	angle	angle	leg			half-angle	tool	tool
(r)	(B=D/h)	(h)	(D)	(R)	(L)	(P-L)	(P)	(alpha)	(theta)	(d)	Х	у	(max alpha)	min relief	rake angle
p12	p13	p16	p17	p11	p18	р3	p19	p25	p52	p53	p54	p55			
0.017	4.000	0.0068	0.0272	0.400	0.4102	0.017	0.4272	50.000	25.000	0.0308	0.3564	0.1805	53.130	26.565	25.000
								45.000	22.500	0.0314	0.3633	0.1635		26.565	22.500
								40.000	20.000	0.0319	0.3695	0.1461		26.565	20.000
								35.000	17.500	0.0324	0.3750	0.1285		26.565	17.500
								30.000	15.000	0.0328	0.3798	0.1106		26.565	15.000
								25.000	12.500	0.0332	0.3839	0.0925		26.565	12.500
								20.000	10.000	0.0335	0.3872	0.0742		26.565	10.000
								15.000	7.500	0.0337	0.3898	0.0558		26.565	7.500
								10.000	5.000	0.0339	0.3917	0.0372		26.565	5.000
								5.000	2.500	0.0340	0.3928	0.0186		26.565	2.500
								0.000	0.000	#DIV/0!	#DIV/0!	0.0000		26.565	0.000
								-5.000	-2.500	0.0340	0.3928	-0.0186		26.565	-2.500
								-10.000	-5.000	0.0339	0.3917	-0.0372		26.565	-5.000
								-15.000	-7.500	0.0337	0.3898	-0.0558		26.565	-7.500
								-20.000	-10.000	0.0335	0.3872	-0.0742		26.565	-10.000
								-25.000	-12.500	0.0332	0.3839	-0.0925		26.565	-12.500
								-30.000	-15.000	0.0328	0.3798	-0.1106		26.565	-15.000
								-35.000	-17.500	0.0324	0.3750	-0.1285		26.565	-17.500
								-40.000	-20.000	0.0319	0.3695	-0.1461		26.565	-20.000
								-45.000	-22.500	0.0314	0.3633	-0.1635		26.565	-22.500
								-50.000	-25.000	0.0308	0.3564	-0.1805		26.565	-25.000

25x Interferometer Scan Showing Portion of Defect Pattern

💠 GENERAL ATOMICS

Confocal Scan of Defect

Machining Time Per Target

- 1. Diamond turn (leaving areas next to defect area oversized): 2.75 hrs
- 2. Cut defect pattern (60 defects) using C-axis mode: 2.25 hrs

Total: 5 hrs each

