Machine Learning Algorithms for Automated NIF Capsule Mandrel Selection

By **Kurt Boehm** General Atomics

Presented to Target Fabrication Meeting Annapolis, MD

April 2019

Work was performed under General Atomics IR&D Program

GENERAL ATOMICS

IFT \ P2019-013 General Atomics Proprietary Information

Motivation: Use Machine Vision and Machine Learning Techniques for PAMS Mandrels Selection

PAMS capsule mandrels are used for production of GDP and beryllium shells

~2 mm

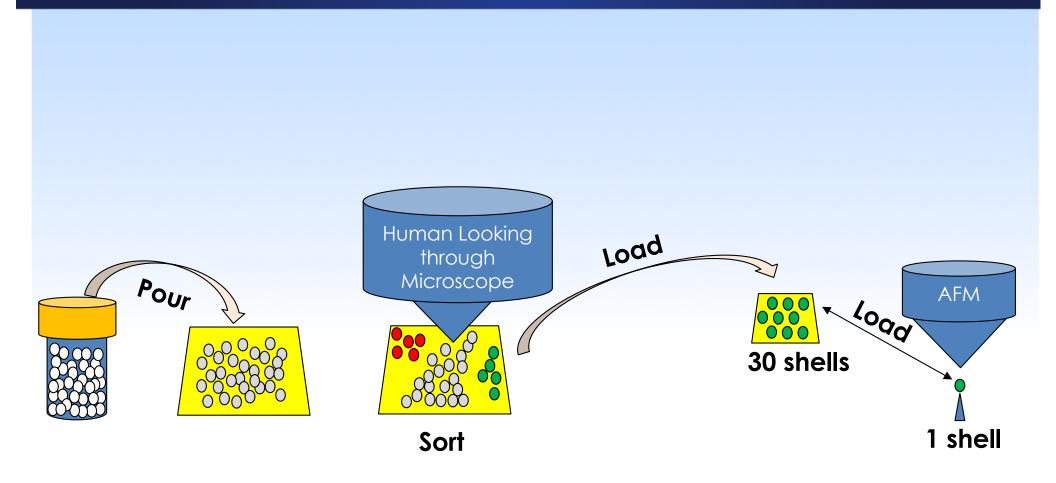
• Each mandrel is inspected for roundness and surface defects

Automation leads to:

- <u>Better shells</u>
 - Higher throughput
 - Consistent results
- <u>Less human interaction</u>
 - Less labor hours
 - Operator independent results
- Provide statistics
 - Quantitative feedback mechanism on batch quality
 - How many defects and what type?
- Increase downstream production yield
 - More costly to discover defects during downstream operations

~2 mm

Shell selection process with no automation



Some Automaton was added to the process in 2015

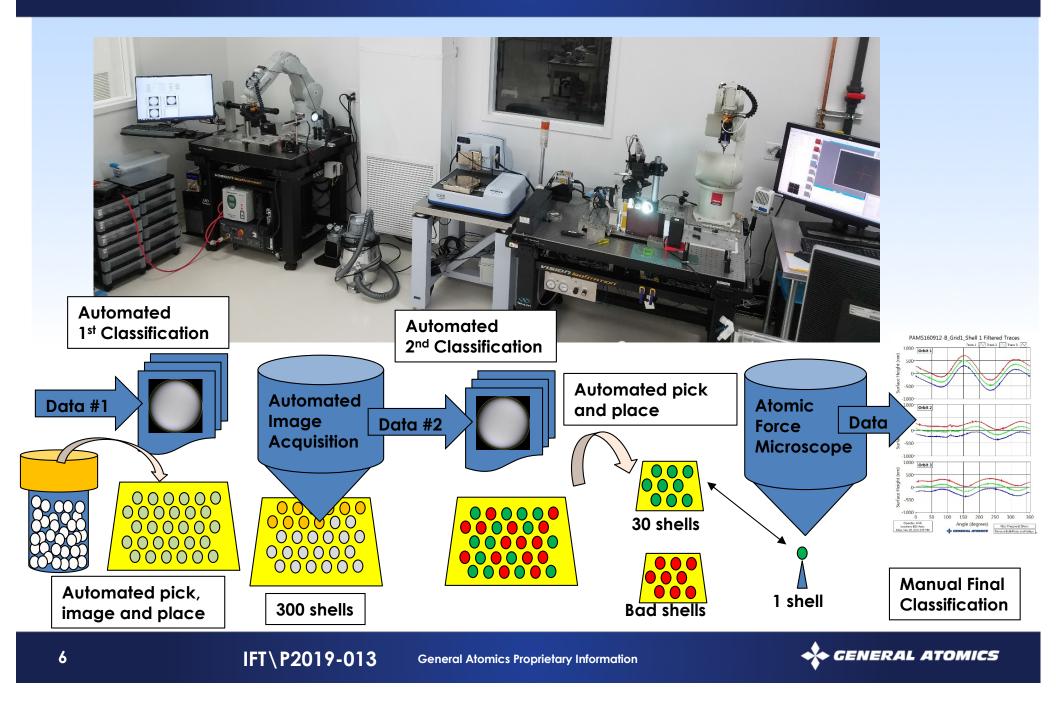
Current Demand requires 0.25 FTE to sift and sort through shells

- Inspect ~650 shell mandrels image sets/week
 - 4-6 man hours of loading and placing shells into grids
 - 4-6 man hours /week of looking at images and recording results
 - Optical Yield: 30 %
 - AFM Yield: 30 %
 - TOTAL Yield <10%

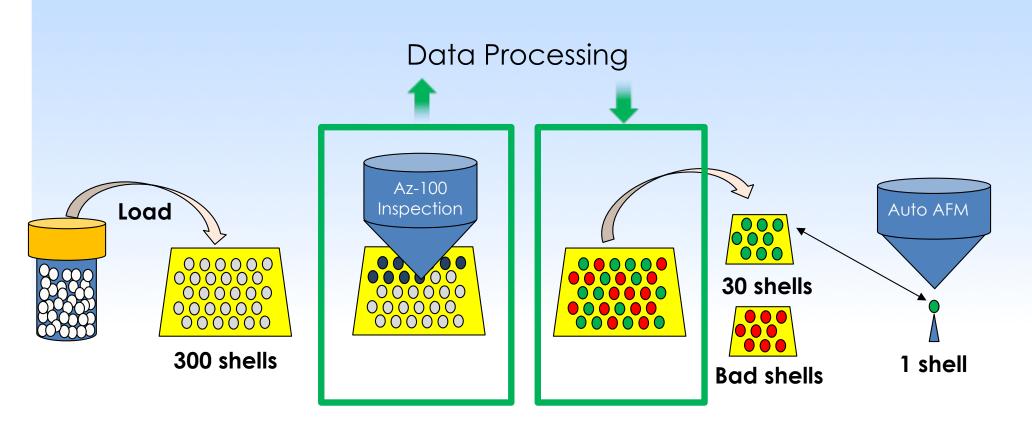
Identify 24 shell mandrels to go into GDP coater

- 2-3 batches of 24 shells/ month
- Metrologize, select best ones
- Capsules are built into CFTA's and shipped to LLNL
 - 2 CFTA's/week (2017 and 2018)

Complete Mandrel Selection Process Has Been Automated



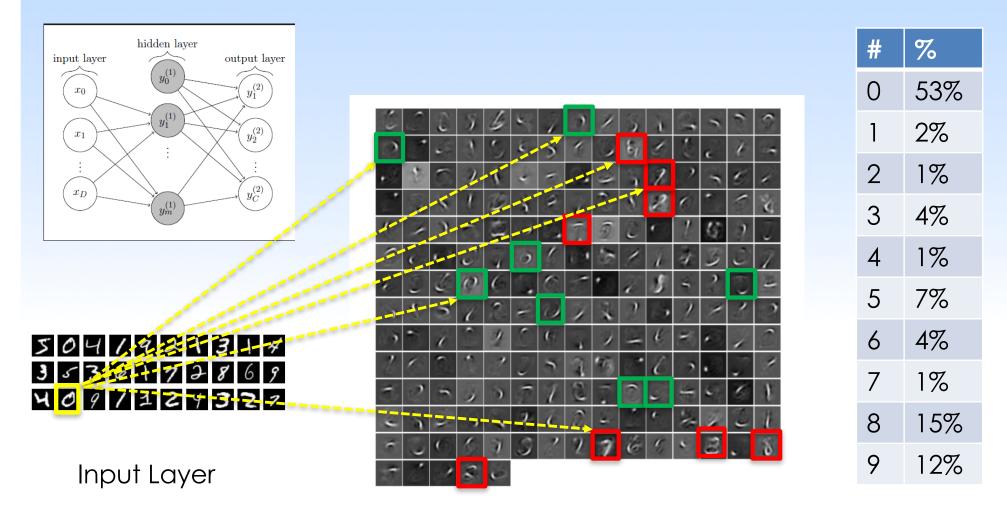
Automated Shell Classification Pass/Fail based on AZ-100 images using Deep Learning Algorithm



Deep Learning requires large data set

- 1000's of classified images are available from past production runs
- Algorithm looks at top and bottom image of shell and classifies as pass or fail by comparing it to historical data

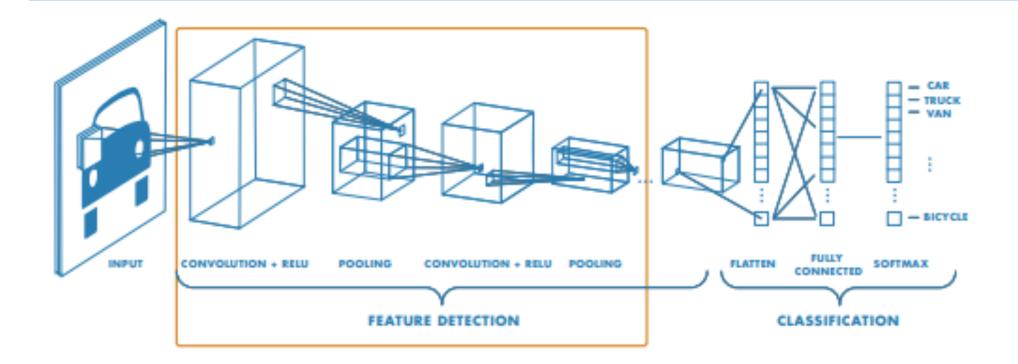
Example: Recognizing MNIST Handwritten Digits using a Two-Layer Network

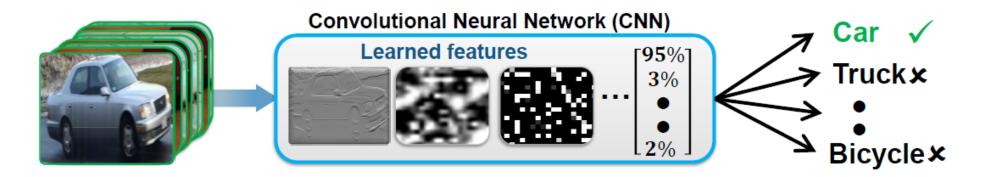


Hidden Layer

Output Layer

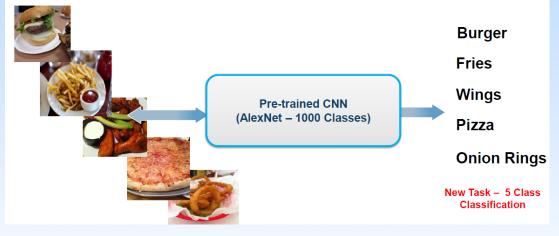
Convolutional Neural Networks add more and more Network Layers and use a "Sliding Filter"





Transfer Learning Allows Application of Existing Architectures and their Trained Weights to new Problems

Fine-tune a pre-trained model (Transfer learning)

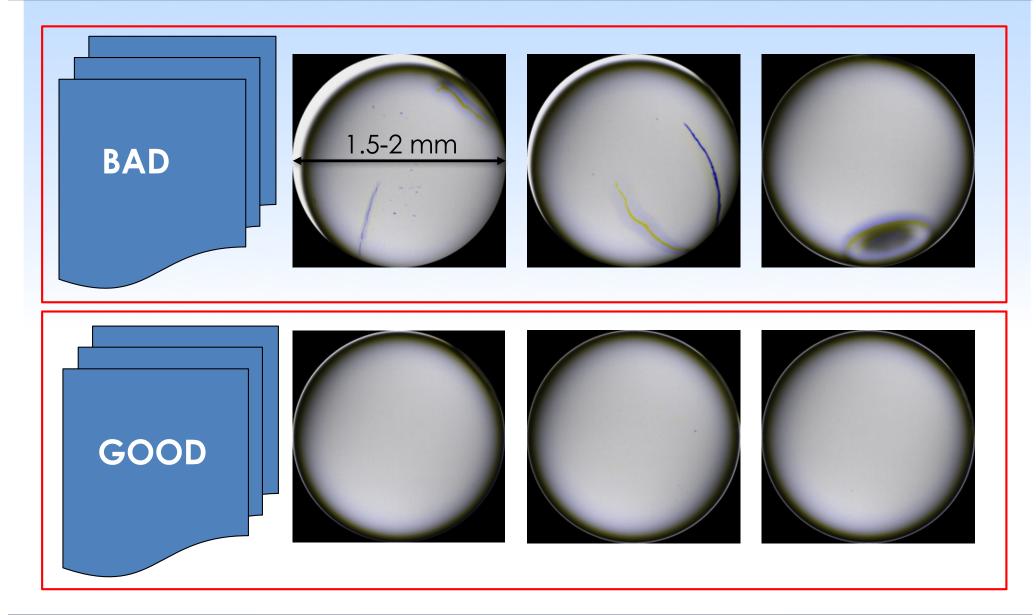


224×224×3 224×224×64 VGG19 Network Structure 112×112×128 56×56×256 28×28×512 14×14×512 1×1×4096 1×1×1000 convolution+ReLU max pooling fully connected+ReLU softmax

IFT\P2019-013

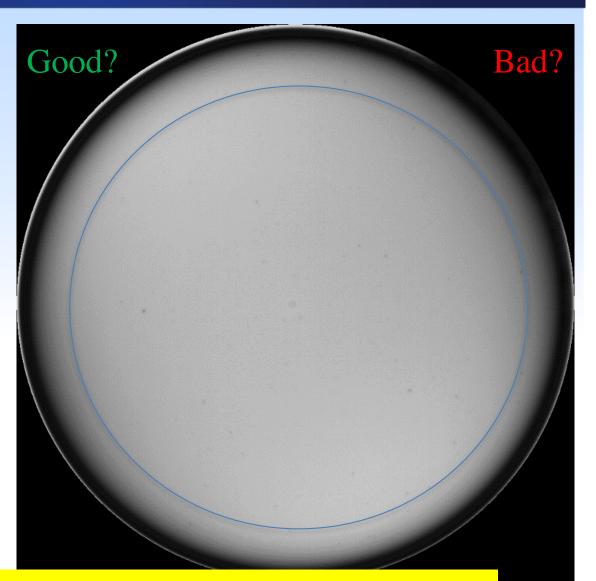
Modify these two layers and re-train on new problem data set

Machine Learning for Image Classification can Automate Microscope Image Inspection



IFT\P2019-013

Classification Suffers from Ambiguity of Data Set

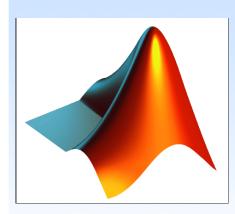


Operator dependency makes it difficult to set success criterion

IFT\P2019-013

General Atomics Proprietary Information

Reasonable results could be achieved using pre-trained networks on commercially available software packages



VGG19

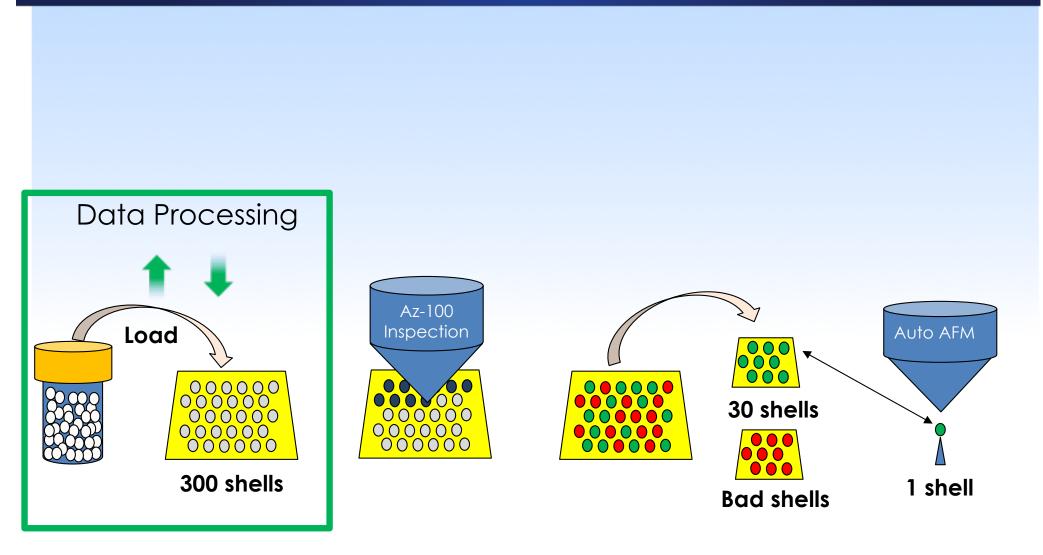
• Only small modification needed in the last couple of layers to apply these networks to our problem

- Ran four network architectures to compare
- Used increasing size of input data (500, 1000, 2000 images) of past production data
- Test Data set of 206 images, 103 good ones 103 bad ones

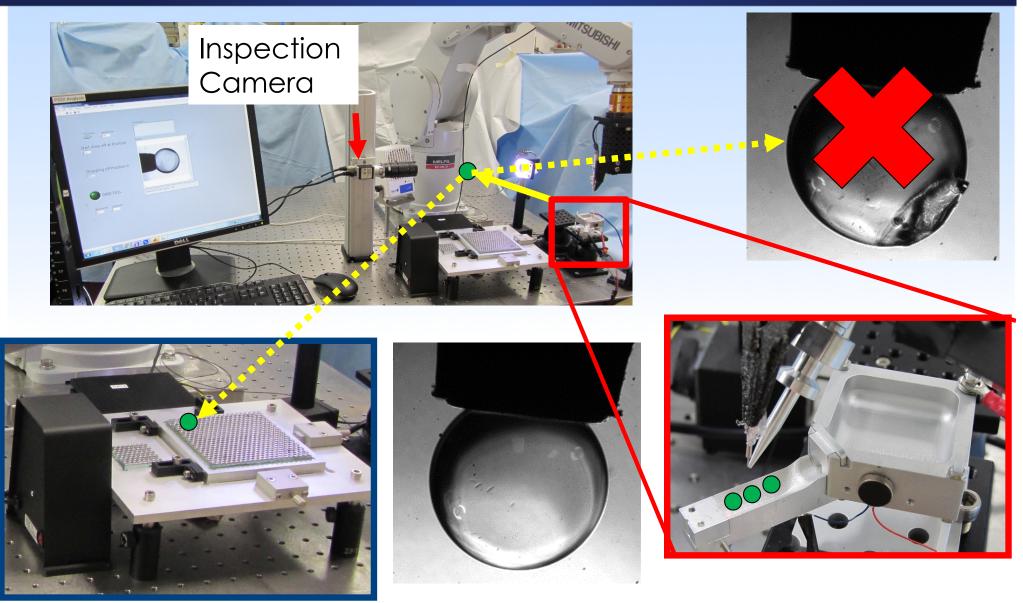
	TOTAL	% age accuracy	BAD	% age	GOOD	% - age
AlexNet	176	0.85	84	0.82	92	0.89
VGG16	179	0.87	86	0.83	93	0.90
GoogleNet	177	0.86	87	0.84	90	0.87
VGG19 Operator	177	0.86	76	0.74	99	0.96
Operator Reclassify	155	0.75	70	0.68	85	0.83

VGG19 recognizes good shells, but can't find all the bad ones

Complimentary inspection was implemented while loading shells into inspection tray

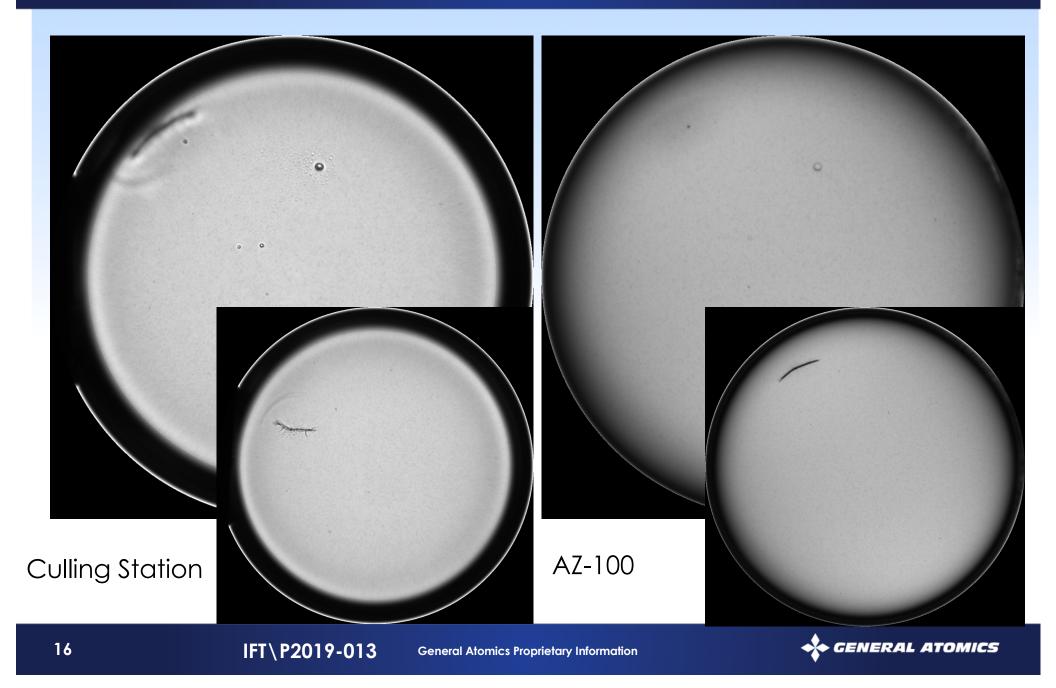


Concept: Using Machine Learning Algorithms to sort shells in pre-inspection step

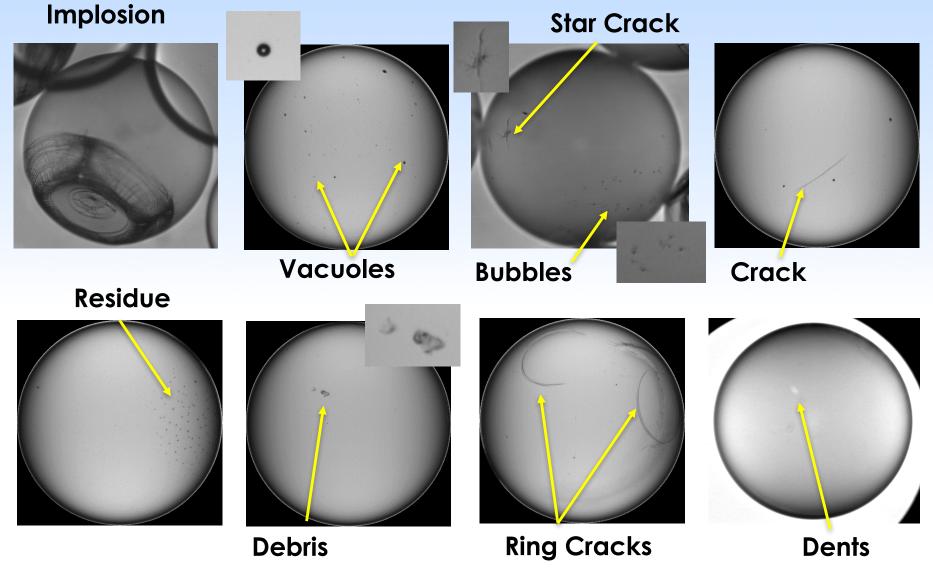


IFT\P2019-013

Optical system on culling robot yields higher contrast images showing defects with higher clarity



We looked at what kind of defect is on the shell to determine pass / fail

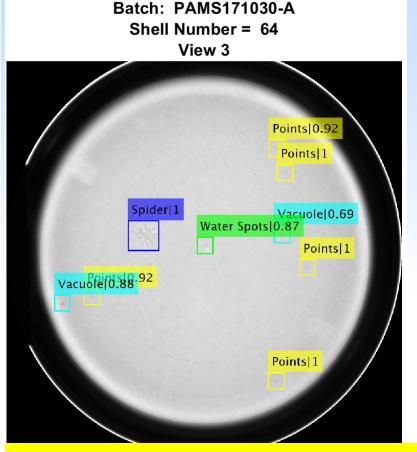


Courtesy of Wendy Sweet

IFT\P2019-013

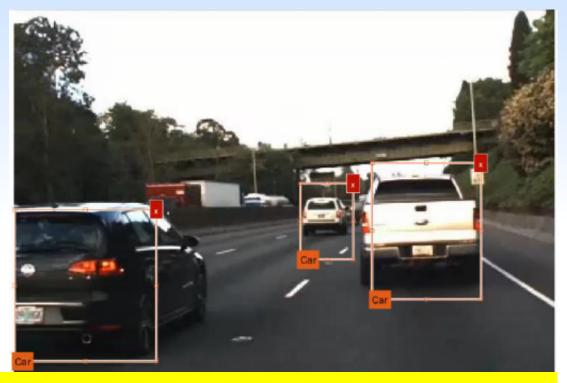
General Atomics Proprietary Information

For Culling Images: Find things that are interesting in an image and then find out what they are



More common commercial application of this problem:

- Identify multiple objects in an image

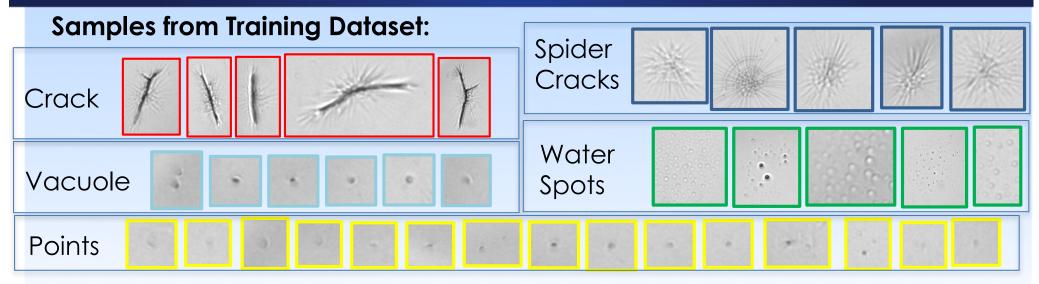


Process:

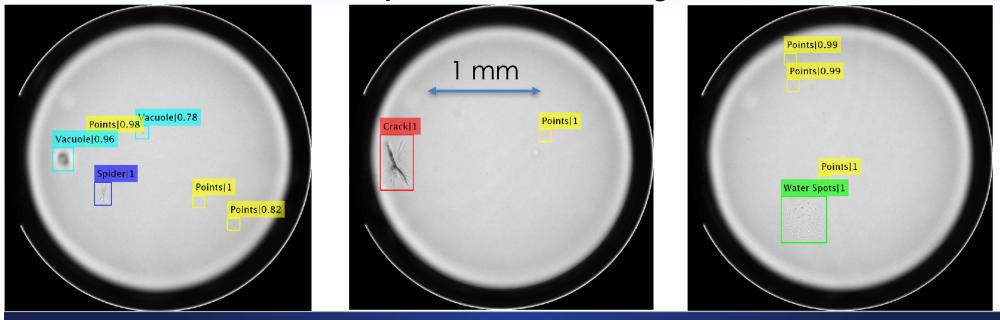
- Draw a box around an object of interest
- Query a different CNN to figure out what the object is

General Atomics Proprietary Information

Defect recognition reaches >95% accuracy



Example results from running the code



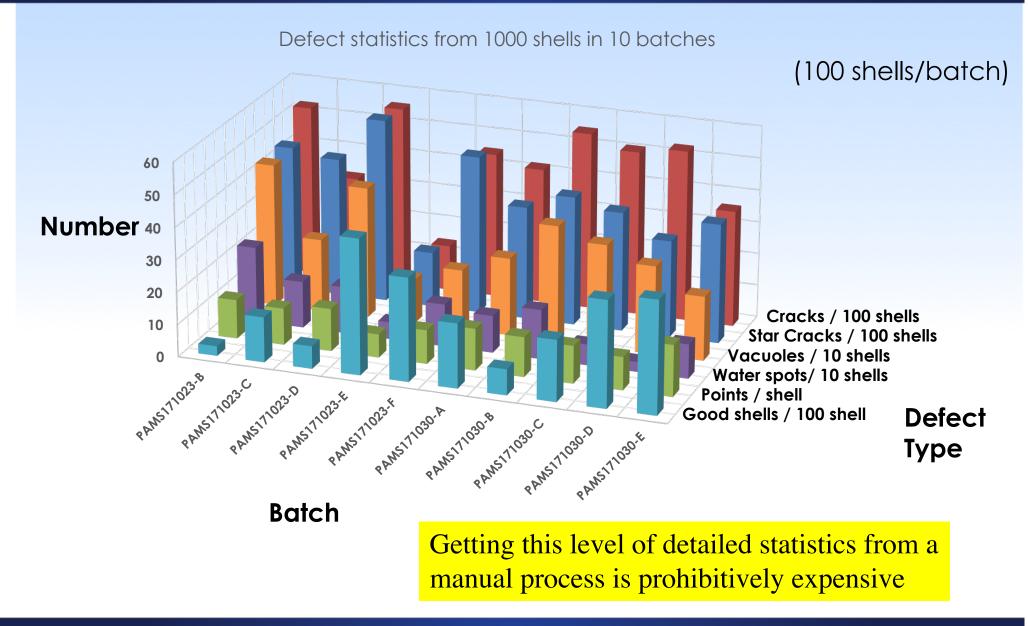
General Atomics Proprietary Information

IFT\P2019-013

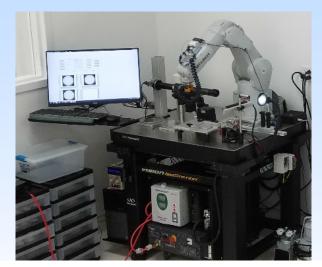
19

Defect Analysis in Action

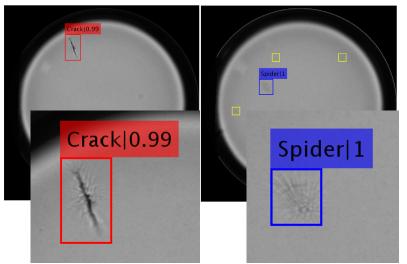
Defect type statistics will be used to improve shell production processes



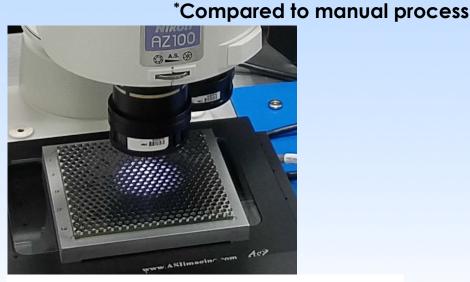
Combining both Machine Learning-algorithms shows 91 % accuracy for good shells with a 10-20 % drop in yield*



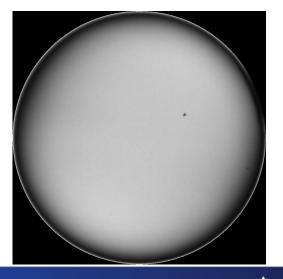
Load Trays + Pre-Inspect Looking for individual defects



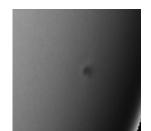
IFT\P2019-013



Secondary Inspection Looking at entire surface area



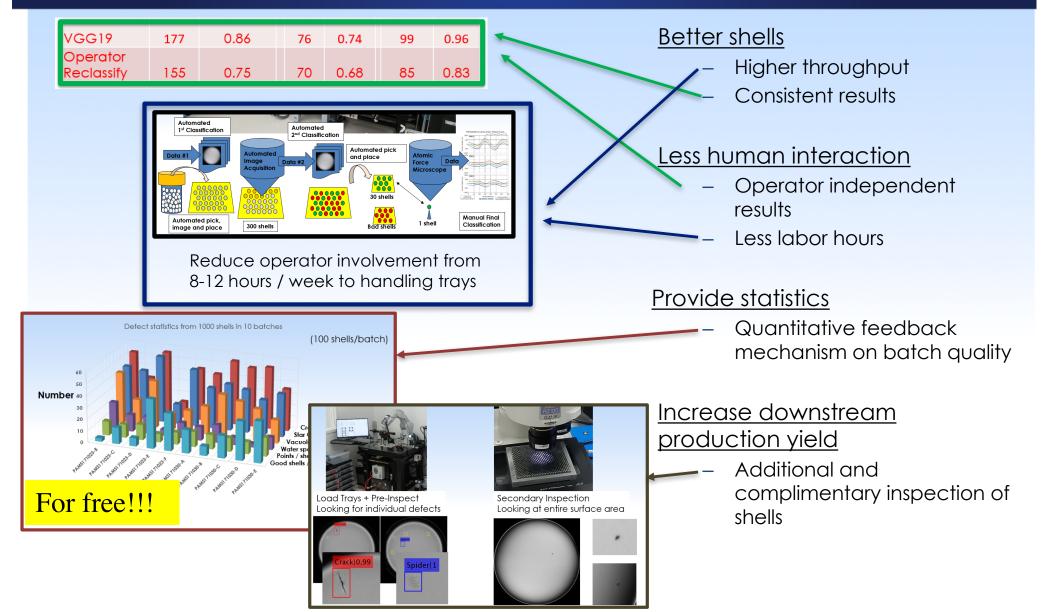




General Atomics Proprietary Information

🖈 GENERAL ATOMICS

Summary: Applying Computer Vision, Machine Learning and Automation Fulfills its Promise for Capsule Selection



General Atomics Proprietary Information