Beryllium Capsule Processing Improvements – Polishing and Mandrel Removal

J. Bae,¹ J. Rodriguez,¹ C. Kong,¹ H. Xu,¹ N. Rice,¹ M. Stadermann,² S. Baxamusa,²

¹General Atomics, P.O. Box 85608, San Diego, California 92186 ²Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550

> 23rd Target Fabrication Meeting April 2019

Work supported by the U.S. Department of Energy under Contract No. DE-NA0001808 and Contract No. 89233118CNA000010 and by Lawrence Livermore National Laboratory under Contract AC52-07NA27344 and General Atomics IR&D

GENERAL ATOMICS

IFT\P2019-012/LLNL-PRES-770912

Beryllium has been of interest as an ablator but overall quality needs improvement

- Beryllium is a promising ablator material due to its low x-ray opacity, high tensile strength, and high thermal conductivity
- Beryllium capsule quality currently lags behind other ablators due to inner surface roughness, sphericity, argon content, crystallinity, etc.

The coating process produces rough capsules and they must be polished

The current polishing method utilizes a lapper

- Quick process (~3 days) but capsules can get stuck, producing facets
- Yield was ~50%
- Process has been improved by using different fixture/capsule slots as they wear down

The polishing process may introduce mid-mode roughening

Typical AFM Data of GDP Mandrel

Typical AFM Data of Polished Be Capsule

- Coating and polishing affect mid- and high-modes
- As-deposited capsules cannot be characterized with AFM due to high roughness

Wet tumble polishing is being explored as an alternative

- Two diamond slurries are used: 3-5 µm and 0-0.2 µm finishing slurry
- Can achieve <15 nm Ra surface roughness
- Shells cannot get stuck
- Ready for production qualification

Power spectra of test capsules do not change significantly in the mid-mode region

Current oxygen mandrel burnout causes inner surface defects

- Mandrels removed with oxygen at 380°C over 2-3 days
- Prior studies have shown temperature to be a strong driver for surface roughness

Concentration gradients can diffuse at oxygen mandrel removal conditions

 Problem has been solved for stepped dopant profiles but still relevant for concentration gradients

*Images taken from H. Huang's (GA) 54th annual APS DPP presentation

We are exploring ozone etching as an alternative mandrel removal method

 Hotfinger is held at 300°C while room temperature O₃/O₂ mixture flows over it

- $O_3 \lambda_{RT} = 3 \text{ days}, \lambda_{300^\circ C} = <1.5 \text{ sec}$

• Slower process – up to 2 weeks processing time

Current mandrel removal process can cause cracking in metal gradient Be capsules

X-Ray Image of Be/Cr Graded Capsule – Oxygen Burnout

X-Ray Image of Be/Cr Graded Keyhole Capsule – Ozone Burnout

Mass loss is similar between 10 µm and 15 µm drill holes

Results suggest reaction rate limitation

Ozone burnout sometimes leaves residue

Summary

Tumble polishing

 Cannot damage shells by introducing facets but processing time increases up to 2 weeks

Ozone mandrel removal

- Reduces processing temperature and preserves inner/outer surface quality but increases processing time up to 2 weeks
- Tumble finishing and ozone mandrel removal are promising processing methods that will likely increase yield and quality of capsules

