Overview of High Density Carbon Capsules for Weekly Layered NIF Target Builds

N.G. Rice,¹ C. Kong,¹ E.L. Alfonso,¹ W. Sweet,¹ J.W. Crippen,¹ F.H. Elsner,¹ T. Bunn,³ and J. Biener²

¹General Atomics, P.O. Box 85608, San Diego, California 92186-5608 ²Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 ³Akima Infrastructure Services, LLC, P.O. Box 808, Livermore, California 94550

> 23rd Target Fabrication Meeting Annapolis, Maryland April 23-26, 2019

This work performed under the auspices of the U.S. Department of Energy by General Atomics under Contract DE-NA0001808 and by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

NIF set the goal of fielding at least one ice-layer target per week

One ice-layer per week requires a reliable and flexible target supply

*Thanks to Becky Butlin & Chris Choate

2IFT\P2019-034

HDC capsules for NIF cryo-targets require multi-month lead times

2017 HDC CFTA Process Flow

Campaign leaders do not want to wait ~6 months between experiments
Goal is to reduce time-to-market

Improvements on rate-limiting steps can reduce overall processing time

inthistolk *Mandrel Acquisition – 6 weeks

- Coating/Polishing 6 weeks, governed by physics of the process
- *Leaching 6 weeks (for 5 µm drill hole)
- *CFTA 2 weeks

4IFT\P2019-034

*Discu

Optimization in HDC capsule processing has reduced time-to-market by ~10 weeks and enhanced process reproducibility

Standardizing mandrel sizes and prepositioning at Diamond Materials reduces lead time by ~6 weeks

Specifying capsule inner diameter ranges allows bulk acquisition of mandrels increasing flexibility and lowering time & cost within a size range

Implementing pressure leaching process* on average reduces 5 µm drill hole leach time by 80%!

Manipulating the reaction generated gas bubble improves fluid exchange and reduces etch time

*Details in Casey Kong's presentation

7IFT\P2019-034

Pressure leaching provides feasibility of further improvements such as 2 µm fill tubes*

2 µm fill tube

Vol = ~880 µm³

< July 2016

10 µm fill tube

5 μm fill tube Vol = ~2100 μm³ Mass = ~8 ng

36.92 µm

HDC

-10.44 µm

5.02 µm

2.32 µm

Si Mandrel

July 2016

February 2018

Further improvements underway to increase repeatability of small hole laser drilling

*Details in Jay Crippen's presentation *IFT\P2019-034

Implementing universal parts streamlines fill tube assemblies*

Newer target design allows flexible location of joint as long as it's outside the hohlraum

CFTA assembly becomes limiting step following capsule processing rate improvement

Capsule can be group processed into "bins" ready to be assembled into CFTAs

Questions?

11 |FT\P2019-034

Implementing universal parts streamlines fill tube assemblies*

- Historical target design required the CFTA to be glued to the diagnostic band at the fill tubepolymicro joint
- Standardized fill tubes eliminate a sequential build step and allow prefabrication

Not to scale

