The potential of imposed magnetic fields to enhance ignition probability in indirect (and direct) drive targets

L. John Perkins with thanks to: B. G. Logan, G. B. Zimmerman, D. D. Ho, D. J. Strozzi, J. D. Moody, M. A. Rhodes,

Meeting on Magnetic Fields in Laser Plasmas, Laboratory for Laser Energetics, University of Rochester, 23 and 24 April 2018

THE APPLICATION OF IMPOSED MAGNETIC FIELDS TO IGNITION AND THERMONUCLEAR BURN ON THE NATIONAL IGNITION FACILITY

We are studying the impact of highly compressed magnetic fields on the ignition and burn of National Ignition Facility targets. Initial seed fields of 20-50T compressing to greater than 10⁴T (100MG) under implosion may reduce hotspot conditions required for ignition and propagating burn through range reduction and magnetic mirror trapping of fusion alpha particles, suppression of electron heat conduction and potential stabilization of hydrodynamic instabilities. This might permit recovery of ignition, or at least significant alpha particle heating, in capsules that would otherwise fail because of adverse hydrodynamic conditions [1]. More generally, it may also permit attainment of ignition in targets redesigned to operate under reduced drive and/or lower convergence ratios.

Our 2-D simulations for NIF indirect-drive ignition platforms suggest that compressed magnetic fields may shift the ignition "cliff" to the right in that capsules might now attain ignition and fusion yield at shell perturbations that would otherwise result in only low yield, non-ignition. In particular, simulations indicate that optimum fields of ~50T might elicit MJ-yields from our current best performing – but, presently submarginal – capsules. We are also studying utility of magnetic fields to enhance volumetric yield in room-temperature DT-gas capsules (likely the first proof-of-principle tests) and metal-gas capsules, and to ameliorate hot electron preheat from hohlraum laser-plasma interactions. However, results thus far are merely code predictions for what, in reality, will be complex 3-D MHD processes. *Therefore initial proof-of-principle experiments are now essential to gauge the utility of this concept to enhance the ignition probability of NIF capsules*

We have also tested candidate hohlraum magnet coils containing U "hohlraum" sleeves driven by a pulsed power supply that could be later integrated in the NIF TANDM DIM and have achieved axial fields of ~58T with a nominal design goal of 50T

[1] L. J. Perkins, et al, "The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion", *Phys. Plasmas* 24, 062708 (2017)

Four classes of NIF magnetized ignition/burn platforms have been studied in indirect drive

Could imposed magnetic fields enhance the prospects for NIF ignition in the face of our present fundamental issue?

Which is (IMHO): Our cold-fuel piston is not efficiently compressing the hotspot

Piston is not round

- Larger surface area for hotspot heat loss
- Less ideal 3D spherical compression
- Cold fuel-hotspot penetration/mix (but may be ~modest because higher mode instabilities may be suppressed by adiabatic shaping)

Piston is not a good tamper and has thin spots

- Lower tamp $\rho\text{-}\text{R},$ less momentum transfer to the hotspot

Piston is not efficiently converting its kinetic energy to thermal compression at stagnation

 Residual kinetic energy remains at "stagnation" (can be more than 50% of the peak inflight value) ⇒low coupling efficiency

But – our best performing shots to date are on the foot of the alpha-heated ignition cliff!

This is the regime where compressed magnetic fields
offer the most benefit to ICF ignition

Starting point: Cryo-layered-DT capsule with HDC ablator, 672 U-hohlraum, full laser pulse shape, 3-shock, x1 roughness

1130µm

DT gas

z-axis

76µm

62µm

r-axis

Laboratory Directed Research and Develop

Density contours at ignition (x1 roughness) $V_{max} = 3.94 \times 10^7 \text{ cm/s}$ RKE: $E_{ke}^{stag} = 3.1 kJ (\Rightarrow high 2D ideal margin, =23\%)$ $\alpha = 1.85$ $\rho R = 1.1 g/cm^3 (rms=21\%)$ **CR = 33**

But with only nominal x1 roughness on ablator and ice surfaces, gives full yield of ~20MJ in 2D simulations, i.e., doesn't fail because there's no low mode or RKE perturbations

Now make it fail: Apply low mode shape perturbations and increase residual kinetic energy at stagnation

Now make it fail: Apply low mode perturbations and increase residual kinetic energy at stagnation

*RKE ~ E_{KE}^{max} (full drive) - E_{KE}^{max} (reduced drive)

Application of an imposed axial magnetic field of 50T for the <u>same</u> inflight implosions

What applied B-fields should we be seeking? Where's the optimum?

Laboratory Directed Research and Developmen

What applied B-fields should we be seeking? Where's the optimum?

Application of imposed B-field of 50T for a submarginal capsule at the bottom of the ignition cliff – it now ignites!

Are toroidal fields formed by asymmetry-driven turbulence and RKE of axial field \Rightarrow closed field lines? If so, maybe even better for ignition

Simulations indicate that RT-growth into the hotspot may be suppressed at higher B-fields (in 2-D at least)

Density contours in the r-z plane at ignition (T(0)=12keV) for imposed singlemode perturbation of amplitude 5µm on ice-gas interface at t=0

Suppression of RT instabilities is due to the field-line bending energy that must be expended (good curvature direction → stabilizing).

Effect will be enhanced at higher mode numbers (smaller bend radii) but 3-D simulations will be required for full insight Could an imposed ~50T hohlraum field compressing to 100's MG under implosion recover ignition in otherwise submarginal targets?

We are testing hohlraum coils in our B490 lab with a candidate NIF-integrable pulsed-power-supply

Design field for NIF hohlraums =50T nominal, 70T max. We have achieved 58T in the lab tests so far

Room temperature gas and metal-gas targets could be fielded from the TANDM DIM. No need for cryo-TARPOS

Central goal of the project:

To have magnetized ign. target(s) designed and a pulsed-power-supply/hohlraum-coil constructed and tested offline for integration on NIF for experiments for 2017+

What's the most important phenomenon for B-dependent burn: Reduction of e-heat-conduction or alpha-orbit-confinement?

⇒ Both effects are synergistically important. B-dependent reduction of electron heat conduction raises the hotspot temperature to where alpha-orbitconfinement bootstraps the hotspot to ignition

The first set of proof-of-principle experiments would be conducted with room-temperature gas targets

Room-temperature gas target performance, HDC shell – Addition of axial B field gives at best ~80% yield increase

Room-temperature gas target performance, HDC shell – Comparison with experiments

Room-temperature gas target performance, HDC shell – Simulate these experiments using reduced drive

Room-temperature gas target performance, HDC shell – What's the most important role of the B-field?

Comparison of DT-CH wetted foam and solid-DT targets with HDC(W) ablator -v- capsule temperature (= gas density)

* for wetted-foam

Addition of B-field restores some of the wetted-foam margin, permitting ignition around CR ~20

Conventional Cryo HS-Ignition Targets

The rich physics of NIF magnetized ignition targets – Findings to date (from 2-D rad-hydro simulations)....

- Initial fields of 20-50T compressing to >10⁴ T (100's MG) under implosion may relax stagnation conditions for ignition and thermonuclear burn in *standard* NIF targets
- Trapped alpha particles are localized within hotspot; electron heat conduction loss in hotspot is shut off across the field ($\omega_{ce}\tau_{ei}>>1$):

=> Can reduce required hotspot ρR^*T and pressure for ign around a factor of 2

- Mirror fields in sausage implosions may provide further insulation to electron and alpha conduction loss. As might frozen-in closed field lines spun up by residual-KE
- Compressed field may suppress Rayleigh-Taylor instability ingress into hotspot during stagnation
- Imposed magnetic fields may enable volumetric ignition/burn in room-temperature high-Z metal-gas targets and may enhanced gas yields in room-temperature low-Z platforms (first experiments?)
- Hohlraum field may improve inner beam propagation and may inhibit transport of latetime LPI hot electron preheat to capsule

Might permit the recovery of ignition, or at least significant fusion alpha particle heating and yield, in otherwise sub-marginal NIF capsules ⇒ Validating proof-of-principle experiments are now required A NIF magnetized target capability would enable a rich portfolio of discovery science and HED applications. Examples...

- Ignition and TN-burn in magnetized capsules (various types) enhancement of ign. margins: ~50T, hohlraum volume, room temp and cryo capsules, ≥1MJ
- Validation of laser preheat in magnetized channels for application to Sandia's MagLIF initiative: ~30T,1cm-length, gas channel, 30kJ
- Collisionless shocks in background fields (gamma-ray bursters, supernova remnants): ~30T+, 1cm, D₂-CH low-density plasma, 1cm-length (0.3cm access) 250kJ
- Magnetic stagnation of plasma flows (solar-terrestrial magnetosphere, heliosphere), instabilities and inhibition. Need $B^2/2\mu_0 \sim \rho v^2$.
- Astrophysical jets (accretion columns, white dwarfs): 10's-T, 0.25n_{crit} doped neopentane, nozzle-LEH for high Mach-No., ≥1MJ
- High T_{rad} hohlraums: high intensity beams in small volume hohlraum with B-suppression of e-transport in hi-Z non-LTE conversion layers: ~10'sT, 80µm beam spots ~10¹⁶W/cm² (no phaseplates)
- High altitude phenomena:
 - Exploding plasma collisionless shocks
 - EMP E1 (WEMP code benchmarking): ~20T, ρR_{gamma-absorber}~1gm/cm^{2,} ⇒100 Compton gyro orbits, e-mfp/gyro orbit ~1/3 (EMP from compressed capsule burn?)

⇒ Applications require ~10's T in ≲cm³ volumes, so all are potentially appropriate experiments for our system