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Use of External Magnetic Fields in Hohlraum 

Plasmas to Improve Laser-Coupling 

 Increased underdense plasma temperatures are desirable for 

NIF ignition hohlraums 

- improve laser propagation through long-scale-length low-Z plasma 

(less inverse bremsstrahlung absorption) 

- possibly mitigate LPI with higher Te (higher klD, more Landau 

damping) 

 Magnetic insulation can increase the plasma temperature with 

Bz ≥ 10-T in gas-filled hohlraums 

 Omega experiments using gas-filled hohlraums demonstrate 

an increased plasma temperature with Bz = 7.5-T 

- plasma conditions measured with 4w Thomson scattering 

- 2-D HYDRA simulations are in good agreement with 

experimental results 



U N C L A S S I F I E D 

Adequate coupling of the laser is required for 

indirect drive ignition  

inner 

beams 
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x-beam 

transfer 

SRS 

• laser-hohlraum coupling affects: 

   - radiation drive (implosion velocity) 

   - radiation symmetry 

   - preheat 

 

• lower than expected Te is inferred [1] in the 

  underdense plasma for NIF ignition hohlraums: 

   - significant collisional absorption in cooler, 

     low-Z plasma (symmetry) 

   - substantial SRS on inner beams (drive, 

    symmetry, preheat, …)  

1. M.D. Rosen et al., HEDP 7, 180 (2011)  

Higher coronal plasma temperatures can improve 

laser-plasma coupling in hohlraum targets 
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SRS reflectivity decreases with increasing klD 

(increasing electron temperature Te) 

 

12!

SRS reflectivity decreases with increasing kλD 

(electron temperature Te) 

 The daughter EPW saturates when 

the trapped e- bounce frequency is 
comparable to the side loss rate for 

a trapped electron 

 ESRS ~ fElaser; RSRS = (ESRS/Elaser)
2, 

so 

 This simple scaling1 agrees well 

with both single- and multi-speckle 
VPIC simulations over a range of 

conditions 
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Magnetic insulation can lead to increased 

hohlraum plasma temperatures 

adapted from “Physics of Laser Fusion, Vol. 1”, 
C.E. Max, UCRL-53107 (1982) 

Bz 

electron 

Larmor radius 

rL = mev/eB 

electron-ion 

collision m.f.p. 

lei ≈ vth/nei 

when rL < lei 

transport across 

magnetic field is 

reduced since 

rL sets the 

transport step size 

Q
B
» -k

||
Ñ

||
T
e
-k

^
Ñ

^
T
e

k
||
» g

0

n
e
T
e
t
ei

m
e

k
^
» g

1
¢
n
e
T
e
t
ei

m
e
w
ce

2 t
ei

2

Braginskii heat flux† 

“insulation” occurs when: 

† ignoring cross-terms 
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Scaling from previous experiments suggests 

Bz ~ 10-T may increase Te in gas-filled hohlraums 
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Magnetized Gasjet 

Experiments* 

* Froula et al., PRL (2007)  

gasjet parameters 

250 eV 

1.5e19 e/cm3 

~ 5 (N2) 

10 T 

NIF parameters 

2 – 2.5 keV 

1e21 e/cm3 

 2 – 3.5 (He or CH) 

10-12 T 
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We expect a temperature increase for magnetized NIF hohlraums 
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Experiments are performed at Omega using 

gas-filled hohlraums and an external B-field 

4/30/2018 

• 19-kJ of 3w in 1-ns pulse (39 beams, 3 cones), gas-fill 0.95-atm 25% C5H12 + 75% CH4 

• plasma conditions measured using 4w Thomson scattering, delayed 0.3-ns 

•  external Bz applied using MIFEDS coil in a 400-ns pulse† 

2.4 mm 

1.6 mm 

0.4 mm f 

P9 

P4 

Side view 

No MIFEDS coil 

MIFEDS 

coil 

Cones 1,2,3 

drive beams 

8-mm I.D. 

16.65-mm O.D. 

4w probe 

† Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009).  
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Time-dependent plasma temperatures are 

measured using 4w Thomson scattering 

MIFEDS 

coil 

4w probe 

gas-filled 

hohlraum 

Thomson spectrum at t = 1-ns 

multi-species form 

factor fit: Te ± 0.1-keV 
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A substantial increase in plasma temperature 

is observed with external B-field 



10 

Material regions and log(density) contour 

plots from 2-D HYDRA simulations - movie 

Au 

CH 

gas 

• Material regions 

   Au (red) 

   CH gas (green) 

 

• Log(density) 

 

• Plots very similar with 

  and without Bz 

 

  (i.e. b >> 1, B-field affects 

   thermal conduction but 

   not hydro) 
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2-D HYDRA simulations show an increase in 

plasma temperature with external Bz = 7.5-T 

BZ = 0 BZ = 7.5-T 

movie 
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2-D HYDRA modeling is in good agreement 

with measured plasma temperatures† 

• HYDRA model: 

 
  - used measured 

    laser parameters 

 

  - flux limiter f = 0.05 

 

  - no self-fields 

 

  - overall trends 

    compare well 

 

  - rapid temperature 

    rise not captured 

    at intermediate 

    times (sampling 

    region different 

    between expt & 

    model). 

 

 † D.S. Montgomery et al., Phys. Plasmas (2015) 
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What is the limit for an empty hohlraum with 

very large Bz?? (conduction only) 

Bz 

Bz very large:                   , but parallel losses remain 

 

For unmagnetized: 

 

                   since the ratio of areas 

 

 

Unmagnetized heat flux: 

 

Maximum increase: 42/7 ≈ 1.48 
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2-D HYDRA: 

Bz = 0  Tmax ~ 3.7 keV 

Bz = 7.5-T Tmax ~ 4.65 keV 

Bz = 60-T Tmax ~ 4.82 keV  

Assume straight field lines 
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What about a hohlraum with a capsule? 

(cartoon not a simulation) 

Bz Bz 

t=0 t ~ several ns 

Magnetic mirror? 

 

T/T0 much larger? 

 

Will need 2-D HYDRA 

simulations … 
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Summary and Conclusions 

 Increased underdense plasma temperatures are desirable for 

NIF ignition hohlraums 

- improve laser propagation through long-scale-length low-Z plasma 

(less inverse bremsstrahlung absorption) 

- possibly mitigate LPI with higher Te (higher klD, more Landau 

damping) 

 Magnetic insulation can increase the plasma temperature with 

Bz ≥ 10-T in gas-filled hohlraums 

 Omega experiments using gas-filled hohlraums demonstrate 

an increased plasma temperature with Bz = 7.5-T 

- plasma conditions measured with 4w Thomson scattering 

- 2-D HYDRA simulations are in good agreement with 

experimental results 
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BACKUPS 
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2-D HYDRA simulations show an increase in 

plasma temperature with external Bz = 7.5-T 

BZ = 0 BZ = 7.5-T 
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Material regions and log(density) contour 

plots from 2-D HYDRA simulations at t=0.9-ns 

Au 

CH 

gas 

• Material regions 

   Au (red) 

   CH gas (green) 

 

• Log(density) 

 

• Plots very similar with 

  and without Bz 

 

  (i.e. b >> 1, B-field affects 

   thermal conduction but 

   not hydro) 
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Finite diffusion time for magnetic field into the 

Au cylindrical hohlraum due to eddy currents 

 

B0 
Bi 

J 

J 
BZ 

Thin conducting shell 

of radius a, thickness D, 

conductivity s 

Omega Hohlraum 

a = 0.8 mm 

D = 5-µm 

sAu = 4e7 (ohm-m)-1 

tm ~ 100-ns 

NIF Hohlraum 

a = 2.5 mm 

D = 25-µm 

sAu = 4e7 (ohm-m)-1 

tm ~ 1.6-µs 

Bz turned on instantly at t=0 

sAu is for 99.9% pure Au at room temperature, 

consider adding impurities, e.g. 0.5% at. Ti + 99.5% Au 

decreases s to 1e7 (ohm-m)-1, then tm ~ 400-ns. 


