Use of External Magnetic Fields in Hohlraum Plasmas to Improve Laser-Coupling

Use of External Magnetic Fields in Hohlraum Plasmas to Improve Laser-Coupling

- Increased underdense plasma temperatures are desirable for NIF ignition hohlraums
 - improve laser propagation through long-scale-length low-Z plasma (less inverse bremsstrahlung absorption)
 - possibly mitigate LPI with higher T_e (higher $k\lambda_D$, more Landau damping)
- Magnetic insulation can increase the plasma temperature with B_z ≥ 10-T in gas-filled hohlraums
- Omega experiments using gas-filled hohlraums demonstrate an increased plasma temperature with B_z = 7.5-T
 - plasma conditions measured with 4ω Thomson scattering
- 2-D HYDRA simulations are in good agreement with experimental results

Adequate coupling of the laser is required for indirect drive ignition

- laser-hohlraum coupling affects:
 - radiation drive (implosion velocity)
 - radiation symmetry
 - preheat
- \bullet lower than expected $T_{\rm e}$ is inferred [1] in the underdense plasma for NIF ignition hohlraums:
 - significant collisional absorption in cooler, low-Z plasma (symmetry)
 - substantial SRS on inner beams (drive, symmetry, preheat, ...)

Higher coronal plasma temperatures can improve laser-plasma coupling in hohlraum targets

UNCLASSIFIED

1. M.D. Rosen *et al., HEDP* **7**, 180 (2011)

SRS reflectivity decreases with increasing $k\lambda_D$ (increasing electron temperature T_e)

 The daughter EPW saturates when the trapped e- bounce frequency is comparable to the side loss rate for a trapped electron

$$\frac{!_{b}}{!_{pe}} = k''_{D} \sqrt{\frac{e^{\#}}{T_{e}}} \sim \frac{!_{sl}}{!_{pe}}$$

• $E_{SRS} \sim fE_{laser}$; $R_{SRS} = (E_{SRS}/E_{laser})^2$, so

$$R_{SRS} \sim \frac{1}{(k!_{D})^{4}}$$
 (or $R_{SRS} \sim T_{e}^{-2}$) "

 This simple scaling¹ agrees well with both single- and multi-speckle VPIC simulations over a range of conditions

¹ Yin, Albright, Rose et al. Phys. Plasmas 19, 056304 (2012) !

Magnetic insulation can lead to increased hohlraum plasma temperatures

adapted from "Physics of Laser Fusion, Vol. 1", C.E. Max, UCRL-53107 (1982)

Braginskii heat flux[†] $Q_B \approx -k_{\parallel} \nabla_{\parallel} T_e - k_{\wedge} \nabla_{\wedge} T_e$ $k_{\parallel} \approx g_0 \frac{n_e T_e t_{ei}}{m_e}$ $k_{\wedge} \approx g'_1 \frac{n_e T_e t_{ei}}{m_e W_{\perp}^2 t_{\perp}^2}$

"insulation" occurs when:

$$\frac{k_{\scriptscriptstyle \wedge}}{k_{\scriptscriptstyle \parallel}} \approx \overset{\text{a}}{\underset{\rm e}{\scriptscriptstyle \circ}} \frac{1}{\mathcal{W}_{ce} t_{_{ei}} \overset{\rm ö^2}{\vartheta}} << 1$$

† ignoring cross-terms

Scaling from previous experiments suggests B_z ~ 10-T may increase T_e in gas-filled hohlraums

* Froula et al., PRL (2007)

	gasjet parameters	NIF parameters
T _e	250 eV	2 – 2.5 keV
n _e	1.5e19 e/cm ³	1e21 e/cm ³
Ζ	~ 5 (N ₂)	2 – 3.5 (He or CH)
Bz	10 T	10-12 T
$\frac{1}{\omega_{ce}^2 au_{ei}^2}$	$\frac{k_{\text{A}}}{k_{\text{H}}} \gg \frac{1}{15}$	$\frac{\kappa_{\perp}}{\kappa_{\parallel}} \approx \frac{1}{10} - \frac{1}{15}$

We expect a temperature increase for magnetized NIF hohlraums

Experiments are performed at Omega using gas-filled hohlraums and an external B-field

- 19-kJ of 3ω in 1-ns pulse (39 beams, 3 cones), gas-fill 0.95-atm 25% C₅H₁₂ + 75% CH₄
- plasma conditions measured using 4ω Thomson scattering, delayed 0.3-ns
- external B_z applied using MIFEDS coil in a 400-ns pulse[†]

† Gotchev et al., Rev. Sci. Instrum. 80, 043504 (2009).

lamos

Time-dependent plasma temperatures are measured using 4ω Thomson scattering

A substantial increase in plasma temperature is observed with external B-field

EST.1943

9

Material regions and log(density) contour plots from 2-D HYDRA simulations - movie

FST 1943

2-D HYDRA simulations show an increase in plasma temperature with external $B_7 = 7.5$ -T

EST.1943

2-D HYDRA modeling is in good agreement with measured plasma temperatures[†]

EST.1943

What is the limit for an empty hohlraum with very large B_z ?? (conduction only)

Assume straight field lines

B_z very large: $k_{\wedge}/k_{\parallel} \gg 0$, but parallel losses remain For unmagnetized:

 $Q_{\parallel} \gg rac{1}{4} Q_{\wedge}$ since the ratio of areas $(A_{\wedge} + A_{\parallel})/A_{\parallel} \gg 4$

Unmagnetized heat flux: $Q \sim T_e^{7/2}$

Maximum increase: $4^{2/7} \approx 1.48$

2-D HYDRA: $B_z = 0$ $T_{max} \sim 3.7 \text{ keV}$ $B_z = 7.5\text{-T}$ $T_{max} \sim 4.65 \text{ keV}$ $B_z = 60\text{-T}$ $T_{max} \sim 4.82 \text{ keV}$

What about a hohlraum with a capsule? (cartoon not a simulation)

EST.1943

Summary and Conclusions

- Increased underdense plasma temperatures are desirable for NIF ignition hohlraums
 - improve laser propagation through long-scale-length low-Z plasma (less inverse bremsstrahlung absorption)
 - possibly mitigate LPI with higher T_e (higher $k\lambda_D$, more Landau damping)
- Magnetic insulation can increase the plasma temperature with B_z ≥ 10-T in gas-filled hohlraums
- Omega experiments using gas-filled hohlraums demonstrate an increased plasma temperature with B_z = 7.5-T
 - plasma conditions measured with 4ω Thomson scattering
- 2-D HYDRA simulations are in good agreement with experimental results

BACKUPS

2-D HYDRA simulations show an increase in plasma temperature with external $B_z = 7.5$ -T

FST 1943

Material regions and log(density) contour plots from 2-D HYDRA simulations at t=0.9-ns

FST 1943

- Material regions Au (red) CH gas (green)
- Log(density)
- Plots very similar with and without B_z

 (i.e. β >> 1, B-field affects thermal conduction but not hydro)

Finite diffusion time for magnetic field into the Au cylindrical hohlraum due to eddy currents

$$\frac{dB_i}{dt} + \frac{B_i}{\tau_m} = \frac{B_0}{\tau_m}$$

$$\tau_m = \frac{1}{2}\mu_0 \sigma \Delta a$$

$$B_i = B_0 \left(1 - e^{-t/\tau_m} \right)$$

Omega Hohlraum a = 0.8 mm Δ = 5-µm σ_{Au} = 4e7 (ohm-m)⁻¹ $\tau_m \sim$ 100-ns NIF Hohlraum a = 2.5 mm ∆ = 25-µm ਨ. = 4e7 (ohm-m)⁻¹

B, turned on instantly at t=0

Thin conducting shell of radius *a*, thickness Δ , conductivity σ

 σ_{Au} is for 99.9% pure Au at room temperature, consider adding impurities, e.g. 0.5% at. Ti + 99.5% Au decreases σ to 1e7 (ohm-m)⁻¹, then $\tau_m \sim$ 400-ns.