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Magnetized plasma jets are readily created in the lab  

for the study of plasmas relevant to astrophysical systems 

 Inertially collimated, supersonic plasmas may be magnetically 

disrupted by an axial B-field 

 

 

 At high enough Rem, inertia-dominant systems (ρv2 >> B2/2μ0) may 

disrupt due to amplification of even a weak axial B-field 
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The dynamics and evolution of collimated plasma flows  

are important to astrophysical accretion systems 

• YSOs, AGN, PNe, and pPNe 

• Magnetic collimation (magnetic tower) 

• Inertial collimation (shock-focused inertial confinement) 

HH 80/81 
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Jets are produced from laser-irradiated plastic targets 

expanding 

plasma 

plasma jet collimates on-

axis 

θc~80° 

90-μm-thick 

plastic cone 

λ0= 0.527 μm 

τ~10 ns 

~600 μm spot 
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Plasma jets are magnetized externally  

using a custom-built, pulse-power solenoid 

The axial B-field at the gap center is linearly proportional to 

the current and within 2% of the analytic solution.  
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Optical interferometry characterizes 

the spatial profile of inertially-confined plasma flows 

Interferometry 

Probe Beam 

λ= 0.532 μm 
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Optical interferometry characterizes 

the spatial profile of inertially-confined plasma flows 
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Processed interferograms show collimated flows  

when no axial B-field is applied 
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A 5-T B-field applied along the jet axis disrupts axial collimation  
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Jet-disruption effectiveness depends on the B-field strength 
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A 5-T axial B-field disrupts the inertially-collimated region of the 

flow, and magnetically collimates the radially expanding plasmas 
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A Lagrangian model* analytically accounts for B-field advection 

and diffusion in a converging cylindrical plasma 

 Uniform, incompressible, constant V0  

 Axial B-field B0 penetrating the volume 

 Elongation occurs in time due to collimation (dR/dt<0) 

L0

R0

V0

B0

initial condition time t later 

*Fedorov CESW 41 (2005)  

L = L0 +V0t

V0

B

Dimensionless metric 
for time 

𝜏 ≡ 𝐿 𝐿0
  

𝑅 =
𝑅0

𝜏
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A Lagrangian model* analytically accounts for B-field advection 

and diffusion in a converging cylindrical plasma 

*Fedorov CESW 41 (2005)  
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A Lagrangian model* analytically accounts for B-field advection 

and diffusion in a converging cylindrical plasma 

*Fedorov CESW 41 (2005)  
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A Lagrangian model* analytically accounts for B-field advection 

and diffusion in a converging cylindrical plasma 

*Fedorov CESW 41 (2005)  

Ratio of B-field 

advection to diffusion 

Diffusion becomes more 

important with increasing 𝛕 

(shrinking radius) 
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A Lagrangian model* analytically accounts for B-field advection 

and diffusion in a converging cylindrical plasma 
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A collimation parameter (ψ) is derived  

from the on-axis pressure normalized to the magnetic pressure 
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A collimation parameter (ψ) is derived  

from the on-axis pressure normalized to the magnetic pressure 
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The Lagrangian-cylinder model describes observations well in a 

semi-quantitative manner at 50 ns (𝜏~25) 
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The Lagrangian-cylinder model describes observations well in a 
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Similar behavior is observed* in magnetized shaped charges 

*Fedorov JAMTP 48 (2007)  

B0 = 0.84 T 

B0 = 1.4 T 
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B-field amplification can quickly cause jet disruption  

at high enough magnetic Reynolds numbers 
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B-field amplification can quickly cause jet disruption  

at high enough magnetic Reynolds numbers 
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B-field amplification can quickly cause jet disruption  

at high enough magnetic Reynolds numbers 

 The presence of even a weak axial B-field in a hydrodynamically 

converging system will disrupt collimation at high enough Rem 

 

 In astrophysical accretion systems Rem > 1010, observations of a weak 

B-field parallel to the outflow* precludes inertial-collimation as a source 

* Targon ApJ 743 (2011) 
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Magnetized plasma jets are readily created in the lab  

for the study of plasmas relevant to astrophysical systems 

 Inertially collimated, supersonic plasmas may be magnetically 

disrupted by an axial B-field 

 

 

 At high enough Rem, inertia-dominant systems (ρv2 >> B2/2μ0) may 

disrupt due to amplification of even a weak axial B-field 
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B-field diffusion may be estimated  

using the magnetic Reynolds number 

 For experimental parameters, L~1 mm and V~50 km/s, 

 

 

 

 Magnetic Reynolds numbers of ~20 suggest diffusion times of 

order 400 ns, significantly longer than the experimental time scale 
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Radial pressure balance determines 

if the plasma cylinder continues to collimate 
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Interferometry is used to measure the free-electron density 

and diagnose the evolution of the plasma jet 
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Radiation-hydrodynamic calculations predict  

inertial collimation in the breakout plasma of conical targets 
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Pinching in this geometry is proposed as a mechanism 

that can form astrophysical jets from isotropic, stellar outflows 
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Proton radiography suggests that jet collimation 

is not aided by self-generated B-fields 
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Lack of proton deflections at the jet location 

indicate hydrodynamic collimation. 
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Processed interferograms indicate collimated jet formation 
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 Interferograms show fringe shifts 

 

 Wavelet analysis reveals the phase 

change distribution 

 

 Abel inversion indicates typical 

densities of ~1018 – 1019 #/cc 
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FLYCHK Results 

Atomic Composition of the Cone: 

C5H8O2 – Trace Sb0.03 

<A> = 6.7 

<Z> = 3.6 

(essentially acrylic) 
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At Te~1eV in the density regimes of interest <Z>~10-1 – 10-3  

At low ionization states 

maybe coulomb interactions 

with neutrals becomes 

important. Quick calculations 

indicate that at Z~.01, 

Te=1eV and ne=1e18, that 

CM x-section is ~1000 times 

less than plasma x-section. 
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Plasma flows in transverse B-fields are relevant  

to a variety of astrophysical plasmas 
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Ñ^ rBq( ) + jqBpolCollimating Force 

self-collimation pinching 

Herbig-Haro Object HH30 

IFT\P2018-026 



A custom-designed ~1-mm3 B-dot probe spatially resolved  

the axial magnetic-field strength in the solenoid gap 
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B-field measurements demonstrate a <5% spatial 

variation within a 2.5 mm radius of the gap center.  
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A custom-designed solenoid provided a constant field 

while still allowing diagnostic access 

The 5 T point design generates 

plasma betas down to βth~0.02  

(n ~ 1018 cm-3, T~1 eV)  
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Magnetohydrodynamic (MHD) equations 

describe both laboratory and astrophysical systems 

Continuity 

Momentum 

Energy 

Ryutov, ApJ 518 (1999); Ryutov, POP 8 (2001); Drake, High-energy-density physics (2006), ch 10; Remington, RMP 78 (2006) 
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Magnetohydrodynamic (MHD) equations 

describe both laboratory and astrophysical systems 

Combine the Electron Momentum Equation and Faraday’s Law: 

Conservation of 

Generalized 

Vorticity 

Electron 

B-field 

Convection  

Thermo-

electric Field 

Generation 

j X B Force 

Term 

Pressure 

Tensor 

Term 

Thermal and 

Frictional 

Forces 

 Most terms describe B-field evolution in time and space 

 Pressure Tensor is typically small relative to other terms 

 Thermoelectric term typically dominates field generation 
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Multiple dimensionless parameters determine the validity 

of using the MHD equations to describe system dynamics 

Astrophysical systems are large and 

fulfill these criteria in many cases! 

  The system exhibits fluid-like behavior lmfp L <<1

  Energy flow by particle heat conduction is negligible Pe >>1

  Energy flow by radiation flux is negligible Peg >>1

  Viscous dissipation is negligible Re >>1

IFT\P2018-026 



Multiple dimensionless parameters determine the validity 

of using the MHD equations to describe system dynamics 

  The system exhibits fluid-like behavior lmfp L <<1

  Energy flow by particle heat conduction is negligible Pe >>1

  Energy flow by radiation flux is negligible Peg >>1

  Viscous dissipation is negligible Re >>1

Two MHD systems evolve similarly when the Euler number (Eu) 

and beta (β) are similar. 

 

 

 

Eu º
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p* r*

b º
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2
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Magnetized plasma jets are prominent  

in young stellar objects with a wide range of parameters 

Curran et al., MNRAS 382 (2007); Carrasco-Gonzalez et al., Science 330 (2010); Ferreira AA 452 (2006); Reipurth ARAA 39 (2001)  

Physical condition Constraint YSO Jets Experiment 

Viscosity plays minor role Reynolds ~103 - 107 ~103 - 105 

Magnetic diffusion plays minor role 
Magnetic 

Reynolds 
~1013 - 1017 ~10-1 - 102 

Supersonic flow Mach number ~101 - 102 ~100 - 101 

Thermal compared to magnetic 

pressure 

Thermal plasma 

βth 

~10-3 - 101 ~100 - 105 

Dynamic compared to magnetic 

pressure 

Dynamic 

plasma βdyn 

~10-3 - 101 ~10-3 - 105 
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