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We	have	successfully	observed	magnetized	bow	
shocks	on	OMEGA

• Campaign to create and observe astrophysically relevant laboratory-scale
magnetized bow shocks
• Using a colliding plasma flow mechanism alongside MIFEDS we have achieved a
βram regime in which magnetized shocks form
• We use proton radiography to measure the magnetic field topology
• We use the spatially resolved Imaging Thomson Scattering (ITS) diagnostic with
2⍵probe beam to measure plasma properties across a shock
• By following reproducible features in the IAW spectra over multiple shots we
find that the magnetic field affects the standoff distance of the shock from the
wire

3



We want to create astrophysically relevant
laboratory-scale magnetized bow shocks

• Magnetized bow shocks form when the incoming ram pressure of a plasma flow
is equal to the magnetic pressure of the obstacle
• Define	ram	beta	as	ratio	of	ram	pressure	to	magnetic	pressure
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Image	credit:	SOHO	(NASA	/	ESA)



Reaching	low-βram on	OMEGA	is	challenging

• Previous attempts to achieve low-βram
systems on OMEGA have been unsuccessful
• MIFEDS capable of ~15 T maximum field
for multi-mm-scale systems
• Laser-produced plasmas have high ram
pressure

• The ram pressure must be reduced for the
current limitations
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MIFEDS	acts	as	the	magnetized	obstacle

• Straight,	current-carrying	wire	is	the	
magnetized	obstacle
• Wire	diameter:	0.762	mm
• Driven	currents:	25	kA	and	17	kA	(or	
13.5	T	and	9	T	max	field	at	wire	
surface)	



We	use	a	multi-stage	plasma	source	to	reduce	
flow	density	and	gradients

• Irradiate two counter-facing carbon
foils
• Diameter: 3.8 mm
• Thickness: ~100 micron

• Collision redirects incoming flows
outward from plane
• Expanding flow has lower density
and velocity than constituents1

• V ~ 100 km/s, 𝝆 ~10-5 g/cc

1 Liao	et	al.	High	Energy	Density	Physics	17	(2015)



We	use	a	multi-stage	plasma	source	to	reduce	
flow	density	and	gradients

• Irradiate two counter-facing carbon
foils
• Diameter: 3.8 mm
• Thickness: ~100 micron

• Collision redirects incoming flows
outward from plane
• Expanding flow has lower density
and velocity than constituents1

• V ~ 100 km/s, 𝝆 ~10-5 g/cc
• This plasma acts as our solar wind

1 Liao	et	al.	High	Energy	Density	Physics	17	(2015)



We	probe	the	system	with	proton	radiography	
and	ITS

• Imaging Thomson scattering (ITS)
diagnostic measures scattered
spectra
• Centered 1.45 mm from wire
• ~43° angle from primary flow axis

• Two probe configurations:
• 20 J, 100 ps (no proton radiography)
• 300 J, 1 ns (offset from proton driver)



We	probe	the	system	with	proton	radiography	
and	ITS

• Imaging Thomson scattering (ITS)
diagnostic measures scattered
spectra
• Centered 1.45 mm from wire
• ~43° angle from primary flow axis

• Two probe configurations:
• 20 J, 100 ps (no proton radiography)
• 300 J, 1 ns (offset from proton driver)

• D 3He proton source 1 cm from tcc
• 3 and 15 MeV protons

• Protons flow antiparallel to wire
current

Proton	FOV
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We	see	a	sharp	density	jump	at	50	ns

Unshocked Shocked

• We	fit	the	electron	number	
density	using	EPW	spectra
• Inferred	plasma	properties:
• Unshocked:	ne=1	x	1018 cm-3

• Shocked:	ne=12	x	1018 cm-3

• Peak:	ne=24	x	1018 cm-3

• Spike	width	~	0.1	mm

• Probe	laser:
• 20	J,	100	ps

• Detector:
• 3	ns	gate



We	observe	optical	emission	lines	in	the	spectra
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Optical	emission	spectra	provides	another	
measure	of	Te
• Optical	emission	lines	present	in	spectra
• PrismSPECT 0D,	LTE	line	ratios	match	well	
for	carbon	at	5.5	eV
• This	temperature	should	be	of	the	
unperturbed	plasma
• Line	intensity	comparable	to	Thomson	
scattered	intensity	due	to	long	CCD	gate
• TS	probe	seems	to	greatly	heat	the	
plasma
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The	temperature	measurements	do	not	agree
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Proton	images	show	clear	evidence	of	magnetic	
compression

152 C.	K.	Li	et	al.	PRL	100,	225001	(2008)

Proton	FOV



Proton	images	show	clear	evidence	of	magnetic	
compression

• Proton images are a deflection map of the
magnetic topology
• Dependent on:
• proton velocity
• magnetic field strength
• magnetic field orientation

• D 3He proton source with CR39 detector2
• 15 MeV image shown

162 C.	K.	Li	et	al.	PRL	100,	225001	(2008)



Proton	images	also	show	the	field	evolution…

• Bmax =	9	T,	Ep =	15	MeV,	Magnification	=	15	X
• Dark	bands	away	from	wire	indicate	magnetic	compression
• We	don’t	really	know	what	the	field	structure	across	the	shock	should	look	
like



… which	changes	with	magnetic	field	strength

• Bmax =	13.5	T,	Ep =	15	MeV,	Magnification	=	15	X
• Shock	feature	appears	farther	from	the	wire	at	60	ns



• The	features	move	further	out,	but	shock	position	is	hard	to	
decouple	from	deflectometry due	to	3D	effects

There	is	a	clear	difference	in	shock	distance	for	
the	two	field	strengths

13.5	T

9	T



• Observe	simultaneous	changes	in	
density	(EPW)	and	velocity	(IAW)
• Shock	coincides	with	a	brief	decrease	
in	scattered	energy

IAW	spectra	also	shows	
sign	of	shock
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• The	EPW	spectra	appears	to	be	
spread	out
• Emission	lines	no	longer	present

• The	IAW	spectra	exhibit	additional	
features	coincident	with	shock
• Not	entirely	sure	what	they	represent

• We	can	use	these	features	to	test	the	
effect	of	changing	magnetic	field

The	longer	pulse	duration	
changes	spectral	features
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There	are	interesting,	reproducible	features	in	
the	IAW	spectra
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We	follow	these	features	to	measure	how	the	
magnetic	field	affects	the	standoff
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Changing	the	magnetic	field	strength	changes	
the	standoff	distance

• The	high-field	(13.5	T)	shots	have	a	greater	standoff	distance	than	
the	low-field	(9	T)	shots
• Additionally,	the	shock	moves	closer	to	the	wire	between	66	and	86	
ns	for	the	low-field	case	than	the	high-field
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Changing	the	magnetic	field	strength	changes	
the	standoff	distance...	on	both	diagnostics

27

13.5	T

9	T



We	have	successfully	observed	magnetized	bow	
shocks	on	OMEGA

28
450 500 550 600

Wavelength (nm)
0

0.2

0.4

0.6

0.8

1.0

In
te

ns
ity

 (a
rb

)

Data
ne = 24 1018cm-3

ne + 15%
ne - 15%

0.81.01.21.41.61.82.02.2
Distance from wire (mm)

0
0.5
1.0
1.5

2.0
2.5

n e (c
m

-3
)

1019

0

200

400

600

800

T e (e
V)

EPW

0.81.01.21.41.61.82.02.2
400
450
500
550
600
650

W
av

el
en

gt
h 

(n
m

)

Flow direction
Notch
filter

13.5	T

9	T



We	have	successfully	observed	magnetized	bow	
shocks	on	OMEGA

• Campaign to create and observe astrophysically relevant laboratory-scale
magnetized bow shocks
• Using a colliding plasma flow mechanism alongside MIFEDS we have achieved a
βram regime in which magnetized shocks form
• We use proton radiography to measure the magnetic field topology
• We use the spatially resolved Imaging Thomson Scattering (ITS) diagnostic with
2⍵probe beam to measure plasma properties across a shock
• By following reproducible features in the IAW spectra over multiple shots we
find that the magnetic field affects the standoff distance of the shock from the
wire
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• Generate	synthetic	proton	images	based	
on	imposed	magnetic	field	using	ITS	data

• Distance	of	shock	from	wire:	1.2	mm
• Estimated	Shock	depth	(into	page):	0.8	mm
• Doesn’t	change	center	position	much

• Assume	no	magnetic	field	behind	shock
• The	field	jump	at	the	shock	is	primary	
cause	of	the	dark	band(s)

Using	ITS	in	tandem	with	proton	radiography,	we	
can	infer	magnetic	field	properties	at	the	shock
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MIFEDS	acts	as	the	magnetized	obstacle

• Straight,	current-carrying	wire	as	the	
magnetized	obstacle
• Wire	diameter:	0.762	mm
• Driven	currents:	25	kA	and	17	kA	
(or	13.5	T	and	9	T	max	field	at	wire	
surface)	

• Multi-stage	plasma	source	
(collisional)
• Parameters	at	shock	formation:	
• rshock =	1.05	mm	at	t=50	ns
• v	~	100	km/s
• ne ~	1e18	cm-3

• Te ~	5.5	eV


