Magnetic Field Dynamics in Imploding Plasmas*

LLE Rochester 2018

Fernando García Rubio

Javier Sanz Recio

ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid

* Work funded by th Spanish Ministerio de Economía y Competitividad.

Key aspects in MagLIF

- Magnetization of the fuel is intended to
 - \checkmark Provide magnetic insulation: Reduce thermal losses.
 - ✓ Enhance α -particle energy deposition.
- The magnetic field is compressed and amplified.
 - \checkmark The Nernst term degrades the magnetic flux conservation.
 - \checkmark Understanding the plasma dynamics close to the liner becomes essential.

Scheme of the problem

Outline

- 1. Magnetization effects
- 2. Magnetic pressure effects
- 3. Liner material effects
- 4. Ion diffusion

Outline

- 1. Magnetization effects
- 2. Magnetic pressure effects
- 3. Liner material effects
- 4. Ion diffusion

Governing equations

Planar geometry

Simplifying assumptions

1. Low Mach number (subsonic)

 $Ma \ll 1$

2. Large thermal to magnetic pressure ratio

 $\beta = 8\pi p_0/B_0^2 \gg 1$

3. Planar geometry

Self-similarity

- ✓ The motion is triggered by the transport processes: heat conduction.
- ✓ The structure of the equations admits a self-similar solution in form of a diffusive wave.
- ✓ Self-similar variable:

$$\eta = \frac{x}{\sqrt{\kappa_0 t}} \ (\eta \ge 0).$$

✓ The independent variables only depend on one variable:

 $T(x,t) \to T(\eta)$

4/24/2018

Normalization

 \checkmark We normalize the variables:

 $\theta = \frac{T}{T_0}, \quad \phi = \frac{B}{B_0}.$

 \checkmark The equations can be written as:

Cont.

$$\eta \frac{d\theta}{d\eta} + 2\theta^2 \frac{d}{d\eta} \left(\mathcal{P}_c \theta^{3/2} \frac{d\theta}{d\eta} \right) = 0.$$
Ind.

$$-\eta \frac{d\phi}{d\eta} + \frac{d}{d\eta} \left[2\mathcal{P}_c (1 - \mathcal{P}_n) \theta^{5/2} \frac{d\theta}{d\eta} \phi \right] = \underbrace{\frac{2}{\text{Le}}}_{q} \frac{d}{d\eta} \left(\frac{\mathcal{P}_d}{\theta^{3/2}} \frac{d\phi}{d\eta} \right).$$

✓ Coupled through the functions $P_c(x_e)$, $P_c(x_e)$ and $P_d(x_e)$.

$$x_e = x_{e0} \theta^{5/2} \phi.$$

- \checkmark There are two free parameters:
 - 1) Magnetic Lewis number:

Le = $\frac{\text{Thermal conduction}}{\text{Magnetic diffusiviy}}$ 2) Magnetization downstream: x_{e0}

Unmagnetized Plasma.

 $x_{e0} \ll 1$

✓ Magnetic field convected towards the liner.

Magnetized Plasma.

Mass ablation & Magnetic flux losses

4/24/2018

Thermal energy losses

✓ The presence of a cold unmagnetized liner makes the thermal energy losses scale as $x_{e0}^{-7/10}$ instead of x_{e0}^{-2} .

Comparison with previous work

• A. L. Velikovich, J. L. Giuliani and S. T. Zalesak, "Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusión-like plasma", Phys. Plasmas 22, 2015.

				22
	Mass ablation	Heat flux at the liner wall	Thermal energy losses	Magnetic flux losses
elikovich	m = 0	$ q _{x=0} \sim rac{1}{x_{e0}^{1/2}}$	$\mathcal{Q} \sim rac{1}{x_{e0}^{1/2}}$	$\Phi \sim \frac{1}{x_{e0}^{1/2}}$
Present work	$m \sim \frac{1}{x_{e0}^{3/10}}$	$q _{x=0} = 0$	$\mathcal{E} \sim \frac{1}{x_{e0}^{7/10}}$	$\Phi \sim rac{1}{x_{e0}^{7/10}}$
	Velikovi	ch	Present	work
✓ Liner: solid state		✓ Liner: cold dense plasn		
✓ No ablation			\checkmark Ablation	

Outline

1. Magnetization effects

- 2. Magnetic pressure effects
- 3. Liner material effects
- 4. Ion diffusion

Magnetic pressure effects: Finite β

• Continuity:

$$\frac{\partial n}{\partial t} + \frac{\partial}{\partial x}\left(nv\right) = 0,$$

• Momentum:

$$p + \frac{B^2}{8\pi} = p_T = p_{T0},$$

• Energy:

 $\frac{\partial}{\partial t} \left(\frac{1}{\gamma - 1} p + \frac{B^2}{8\pi} \right) + \frac{\partial}{\partial x} \left[\left(\frac{\gamma}{\gamma - 1} p + \frac{B^2}{4\pi} \right) v \right] = \frac{\partial}{\partial x} \left[\underbrace{\chi_{\perp} \frac{\partial T}{\partial x}}_{\text{Cond.}} + \underbrace{\frac{c\beta_{\wedge}^{uT}}{4\pi en}}_{\text{Nernst}} \left(\underbrace{B \frac{\partial T}{\partial x}}_{\text{Hernst}} + \underbrace{T \frac{\partial B}{\partial x}}_{\text{Hernst}} \right) + \underbrace{\frac{D_{m\perp}}{4\pi} B \frac{\partial B}{\partial x}}_{\text{Joule}} \right]$

• Induction:

$$\frac{\partial B}{\partial t} + \frac{\partial}{\partial x} \left(vB \right) = \frac{\partial}{\partial x} \left(\underbrace{\underbrace{D_{m\perp} \frac{\partial B}{\partial x}}_{\text{Joule}} + \underbrace{\frac{c\beta_{\wedge}^{uT}}{en} \frac{\partial T}{\partial x}}_{\text{Nernst}} \right),$$

Mass ablation and Magnetic flux losses

✓ Magnetic pressure enhances mass ablation.

Magnetic flux losses

✓ Magnetic flux conservation is degraded.

Thermal energy losses

 \checkmark The thermal energy losses can be expressed as

$$\mathcal{E} = \int_0^\infty \frac{p_0}{\gamma - 1} \mathrm{d}x - \int_{x_b}^\infty \frac{p}{\gamma - 1} \mathrm{d}x.$$

 \checkmark And computed as

Transport terms through the ablated border

Magnetic energy converted dissipated into thermal energy

Outline

- 1. Magnetization effects
- 2. Magnetic pressure effects
- 3. Liner material effects
- 4. Ion diffusion

Effect of the liner material

Fuel (f)

 $\mathbf{x} = x_b(t)$: Ablated border

 \vec{B}

X

✓ Reduction of thermal conductivity: $\chi_e \sim \frac{1}{Z}$

✓ Enhacement of magnetic diffusivity: $\nu_m \sim Z$

If we neglect ion diffusion

- \checkmark The ablated border is a contact discontinuity:
 - Density is discontinuous.
 - Thermal conductivity is discontinuous.
 - Nernst velocity is discontinuous.

Liner (1)

Ablated plasma

m

x = 0: Hot spot – liner

interface = Ablation front

Profiles for Beryllium liner

Integral quantities

Thermal energy losses

4/24/2018

22

Outline

- 1. Magnetization effects
- 2. Magnetic pressure effects
- 3. Liner material effects
- 4. Ion diffusion

Ion mass flux

Fuel concentration Eq: $\rho \frac{\partial y}{\partial t} + \rho v \frac{\partial y}{\partial r} = -\frac{\partial}{\partial r} \left(\rho y v_1\right)$ Diffusion velocity $v_1 = -\rho D \left(\frac{\mathrm{d}y}{\mathrm{d}x} + k_p \frac{\mathrm{d}\log p_i}{\mathrm{d}x} + \frac{ek_E}{T} \frac{\mathrm{d}U}{\mathrm{d}x} + k_T \frac{\mathrm{d}\log T}{\mathrm{d}x} \right)$ Classical Thermodiffusion Barodiffusion Electrodiffusion Molvig, Simakov & Vold. PoP 21, 092709 (2014) \checkmark Simakov & Molvig. PoP 23, 032115 (2016)

✓ Simakov & Molvig. PoP 23, 032116 (2016)

Mixing layer

 $\checkmark\,$ Fuel concentration profile for Beryllium liner

- \checkmark The diffusion eq. is governed by the Lewis number.
- \checkmark The Lewis number only depends on the liner material.

 $Le \sim \frac{Z_l}{Z_f}$

 \checkmark The width of the mixing layer scales as

$$\epsilon \sim \frac{1}{\sqrt{Le}}$$

	Lythium	Beryllium	Aluminum
Le	350	630	6600

Conclusions

- Magnetization
effects1.Magnetization reduces the effect of the Nernst velocity by confining it to the outer
region of the hot spot.2.The thermal energy losses are reduced by magnetization as $x_e^{-7/10}$.

Magnetic
pressure effects1. Magnetic pressure enhances mass ablation.2. When the magnetic pressure becomes important, the magnetic flux losses are no longer reduced with magnetization.

- Liner material
effects1. A sharp discontinuity appears at the interface between fuel and ablated liner.2. Increasing the atomic number of the liner reduces energy and magnetic flux losses.

THANK YOU FOR YOUR ATTENTION

ANY QUESTION?

Publications

- ✓ F. García-Rubio and J. Sanz, "Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface", Phys. Plasmas 24 (2017).
- ✓ F. García-Rubio and J. Sanz, "Magnetic pressure effects in a plasma-liner interface", Phys. Plasmas 25, 042114 (2018).
- ✓ F. García-Rubio and J. Sanz, "Ion diffusion and liner material effect in a MagLIF fusion-like plasma", to be submitted on Phys. Plasmas.