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 MagNIF Lab Pulser 
— Requirements, main components, system diagram and basic electrical schematic  

 Pulser Components 
— Energy storage, switch, transmission line and load 

 Experimental Results 
— Numerical simulations, PSPICE, magnetic probes, high-speed imaging, two-color 

pyrometer and debris catcher 

 Proposed Design 
— Conceptual CAD, Controls 

 Pulse Power Future Plan 

 

 

Outline 
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Gas pipe disassembly imaged with 10 MHz video camera 
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 Electrical 
— Max voltage 40 kV, short circuit current of 50 kA, pulse widths ~ 𝝁𝒔 
— Max inductance ~ 750 nH 

 Vacuum Integrity 
— Must pass NIF vacuum cleanliness standards 

 Volume  
— Constrained to an airbox that must fit within TANDM payload adapter (or 

slightly modified) 

 Input power 
— +28 VDC 

 Radiation resistance 
— Needs to withstand NIF harsh radiation environment  

 

 

 

Pulser Specific Requirements 
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MagNIF Lab Pulser1 

Offline lab pulser allows significant development and understanding of the dynamics of 
exploding solenoids. 

1Original design by M. Rhodes, F. Allen and S. Hawkins 

 

Figure 1 – MagNIF lab pulser. 
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Lab Pulser System Diagram 
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Figure 2 – System diagram of MagNIF lab pulser. 
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MagNIF lab pulser simplified electrical schematic 

MagNIF lab pulser reduces to four main components: energy storage, switch, transmission line 
and load.  

Capacitor 

Transmission 

Coil Load 

Spark-gap 

~ 1.4 m 

Figure 3 – Side view of MagNIF lab pulser with basic electrical schematic. 
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 4 𝝁F self-healing metallized polypropylene oil filled capacitor 
— max voltage 40 kV 
— peak current 70 kA  
— max stored energy 3.2 kJ, stored charge 0.16 Coulomb 
— ESR < 15 m𝛀, ESL 52 nH 

 Trigatron spark gap 
— working voltage 20-50 kV (N2) 
— peak pulsed current 100 kA 
— inductance < 35 nH 
— breakdown delay and jitter of < 0.5 𝝁s and < 0.2 𝝁s respectively (𝑽𝒈 = 𝟎. 𝟖𝑽𝒔𝒃) 

— Max charge transfer 0.5 Coulomb 
 

Energy Storage and Switch: MagNIF lab pulser uses a high voltage 
capacitor paired with a commercial spark gap for reliable and 
economical switching 
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Pulser delay and jitter is dominated by spark-gap breakdown  

𝑡𝑗~100 ns 

𝑡𝑗 

𝑡𝑑 

𝐼 

𝑡 

 Total delay 𝒕𝒅 is measured from time to 
current peak and jitter 𝒕𝒋 is estimated from 

spread in that measurement 

Figure 9 – Breakdown curves for SG-121 spark-gap. Figure 10 – Jitter is approximately +-50 ns for 30 kV, 3 psig (Nitrogen). 

Note: operating at 6 psig (67% 𝑉𝑠𝑏) 𝑡𝑗  ~120 ns, however will drastically reduce chance of pre-fire.   
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 Electrical trigger system block diagram 

 

 

 

 

 Concerns 
— Neutron and X-ray radiation resistance of electronics 

 Possible alternative 
— Laser triggered spark-gap 

Electrical triggering provides cost effective and reliable switching 
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Figure 10 – Trigger system diagram. 
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 Largest concern is integrated electronics and discrete components at voltage such as 
capacitors, FETs and IGBTs. 
— Capacitors will most likely degrade over time. 
— IGBTs and FETs are susceptible to catastrophic failure from prompt dose. 

 Plan 1: Test current hardware selection under normal operation in a similar 
radiation environment. 
— Turn off radiation susceptible components before the shot? 
— Relocate components within the airbox? 

 Plan 2: Relocate high voltage power supply to rack. Laser triggered spark gap. 
 

 

Radiation Damage Component Testing 
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Figure 4 – CAD model and prototype strip-line potted in a vacuum flange. 
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 Tested prototypes to 32 kA and 12 kV 
(drop over strip-line and load) 

 Working on new prototype for 50 kA 
and 40 kV 

 Passed NIF cleanliness testing 

Transmission line: Kapton strip-line provides very low inductance, 
high voltage standoff and vacuum compatibility. 
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Figure 5 – Kapton strip-line layup. 
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 Gas Pipe Coil 
— 14 turn 
— 1 mm pitch 
— 9 mm diameter 
— 26 AWG Kapton coated silver-plated solid-core  
copper wire 
— 52 m𝛀 (300 K) – 448 m𝛀 (1350 K)1 

— ~ 800-900 nH 

 Warm Hohlraum Coil (less defined) 
— 5.5-6.5 turn 
— 0.7 mm pitch 
— 6 mm diameter 
— 24 AWG Kapton coated silver-plated solid-core copper wire 
— 14 m𝛀 (300 K) – 90 m𝛀 (1350 K)1 

— ~ 200 nH 
 
 

 
 

Load: During testing, simple solenoids are wound on ABS and PEEK 
mandrels and terminated with ring lugs. 

1Matula Ra, Journal of Physical and Chemical Reference Data 1979 

 

 
 

Figure 6 – CAD model of typical gas pipe and 

Hohlraum coils used for testing. 
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PSPICE Model1 and action dependent coil resistivity accurately 
predicts pulser performance 
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Figure 7 – PSPICE model of the MagNIF lab pulser. 

Figure 8 – Comparison of PSPICE model with experimental gas pipe 28 kV data. 

1PSPICE simulation and plot courtesy of Glen James 
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Typical magnetic pick-up probe measurements for gas pipe and 
Hohlraum style coils 
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Figure 11 – Typical magnetic measurements of gas pipe and Hohlraum style 

coils. 
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Numerical Studies1 of 5.5 Turn Hohlraum Coil 

1Simulation plots courtesy of Charles Brown 

 
 

Figure 13 – Spatial profile of magnetic field for 5.5 turn Hohlraum coil at 

40 kA. 

Figure 12 – On axis magnetic field strength of 5.5 turn Hohlraum coil with varying 

currents. 

𝑑𝑐𝑎𝑝𝑠𝑢𝑙𝑒  ~ 2 𝑚𝑚 

 



17 
P0000000.ppt – Author – Event – Month 00, 2015 

Electrostatic Simulations1 of Pulser Hardware Allow for 
Optimization 

1Simulation plots courtesy of Charles Brown 

 
 

Figure 12 – Electrostatic field simulation of pulser hardware. Simulation voltage is 1 V, with a maximum 

electric field strength of 43.3 V/m, which corresponds to 1.7 MV/m when scaled to 40 kV.  The dielectric 

strength of air at 1 atmosphere is 3 MV/m. 
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Multi-channel magnetic probes have been developed using PCB 
inductor chips with spatial resolution of ~ 2 mm. 

𝑉𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =
𝑁𝑑Φ

𝑑𝑡
, 𝑉2 =

1

𝑅𝐶
∫ 𝑉1 𝑡 𝑑𝑡 

∴ 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
𝑁𝐴𝑐𝑜𝑠 𝜃

𝑅𝐶
𝐵 

 

Figure 16 – Calibrated probe signal to Helmholtz current 

used for calibration. 

𝐵𝑧 

Figure 14 – CAD model of gas pipe coil and 4 channel B-dot 

probe. 

2.92 x 2.79 x 2.03 mm 

(1.80 x 1.12 x 1.02 mm) 

Figure 15 – simplified probe circuit with RC integrator. 
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To help quantify coil melting, debris is captured in Aerogel pucks 
and analyzed under a microscope  

𝑑~40 𝜇𝑚 

 

 

 

 

 

 

 

 Python script adjusts contrast, converts RGB 
information into scalar intensity maps, finds 
“blobs” and measures their relative size 

Figure 17 – Microscope image of debris captured in Aerogel puck. 

Figure 18 – Python script is used for further processing and tracking blobs. 
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2D temperature maps are estimated using two-color pyrometry at 
10 MHz 

Figure 19 – Two-color pyrometer captures the same image at two wavelengths at 

10 MHz.  

Figure 20 – Exploding wire short example. Temperature units not 

calibrated 

 Two-color pyrometer is used to measure the temperature of the coils to ensure 
adequate melting just after the peak of the current pulse 
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Conceptual Design 

HV Charging 

Supply 

Spark-Gap 

Switch 

Trigger Pin (or 

collimating optics) 

Shunt 

Resistor Return 

Current 

Vacuum 

Interface Kapton Strip-

Line 

Vacuum Relay 

(or Ross Relay) 

Trigger Head 

Dump 

Resistor 

Trigger 

Transformer 

HV Capacitor 

Damping 

Resistors 



22 
P0000000.ppt – Author – Event – Month 00, 2015 

Three high-voltage vacuum connections are required to connect 
the pulser to the target 

Ross Relay 

Multi-lam pin 

and crimp or 

ring lugs to 

target coil wires 

Rigid Strip-line (potted) 
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Strip-line to wire connection: ring lugs are a simple connection 
that have proven reliable in lab testing. 

Flex Circuit 

Twisted Pair Wire 

Option: Multi-

lam pin and 

crimp to target 

coil wires 

Option:  

Ring lug to 

target coil wires 
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 Achieved 30 Tesla in gas pipe coil targets 

 Achieved 35 Tesla in Hohlraum coil targets 
— Limited by pulser voltage and inductance in lab 

 Developed a full suite of diagnostics for continuing coil development 

 Integrated pulser into DIM compatible volume 

Experimental Summary 
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 Current Design Status 
— Conceptual design that fits inside of an airbox in TANDM with tested 

components that should be compatible with the NIF facility 
 

 Current Experimental Status 
— 50 kA, 40 kV strip-lines in development 
— Need to test strip-line performance in vacuum 
— When new high-speed camera arrives, can finish pyrometer diagnostic and 

resume coil testing 
— Testing connection methods for rigid and flexible strip-lines to pulser and coil 

loads. 

 Risks 
— Strip-line vacuum integrity 
— Radiation resistance for electronics 
— Connections from pulser to coil load 
— High voltage standoff in pulser airbox 

Pulse Power Plan Forward 
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Backup Slides 
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 Warm B-field requirements review on 12/18/17 

 Warm B-field FMEA review on TBD 

 Warm B-field pulsed power CDR on 2/14/18 
— Focused session on electrical design concept 
— Reviewed by SMEs from LLNL, LLE, SNL, Univ. of Michigan 

Sample Slide 

Summary box has a full-width bleed.  
Delete if not needed. 
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Radiation Resistance of Kapton Film 

Summary box has a full-width bleed.  
Delete if not needed. 
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 Gas pipe solenoid (single layer coil approximation)1 

𝑳 =
𝟎. 𝟎𝟎𝟒𝝅𝟐𝒂𝟐𝑵𝟐𝑲

𝒃
= 𝟏. 𝟎𝟓 𝝁𝑯 

Where, 𝒂 = mean radius, 𝒃 = length, 𝑵 = number of turns, 𝑲 = tabulated end-
effect correction factor 

 Hohlraum Solenoid 

𝑳 =
𝟎. 𝟎𝟎𝟒𝝅𝟐𝒂𝟐𝑵𝟐𝑲

𝒃
= 𝟎. 𝟏𝟗𝟏𝝁𝑯 

 
 
 

 
 

Inductance Calculations 

Summary box has a full-width bleed.  
Delete if not needed. 

1Grover F., Inductance Calculations 1973 
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Transmission Line Impedances1 

Summary box has a full-width bleed.  
Delete if not needed. 

1Smith F., Pulse Electronics 

 

 
 

Transmission Line Capacitance and Inductance per Length 

Constants     

μ0
 1.25664E-06 [H/m] 

μr
 1 [H/m] 

ε0
 8.85419E-12 [F/m] 

εr
 2 [F/m] 

π 3.141592654 

Coaxial Line   

a 0.01 [m] 

b 0.1 [m] 

C 4.83218E-11 [F] 

L 4.60517E-07 [H] 

Z0
 97.69041201 [Ω] 

2 Parallel Open Wire Line 

a 0.01 [m] 

b 0.1 [m] 

C 1.85706E-11 [F] 

L 1.19829E-06 [H] 

Z0
 254.1963126 [Ω] 

Parallel Plate Line   

w 0.1 [m] 

s 0.01 [m] 

C 1.77084E-10 [F] 

L 1.25664E-07 [H] 

Z0
 26.65792565 [Ω] 

Single Wire Above Conducting Plate 

a 0.01 [m] 

h 0.1 [m] 

C 3.01623E-11 [F] 

L 7.37776E-07 [H] 

Z0
 156.5059006 [Ω] 


