

PhoPs

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Magnetized laser produced plasmas: A way to reproduce astrophysical systems at LULI

Albertazzi Bruno

ÉCOLE

Outline

General context: laboratory astrophysics

1^{er} Application: Collimation of Astrophysical Jets

- Context and motivation
- Results of ELFIE experiments
- Simulation platform: DUED + GORGON
- Comparison astrophysical simulations RAMSES vs astronomical observations

2^{eme} Application: Dynamics and structure of magnetized reverse shock in POLAR

- Context and motivation
- Results of LULI experiments
- Simulation FLASH

Modeling in the laboratory astrophysical plasmas

Possibility to reproduce relevant astrophysical conditions

Using High power laser coupled to high magnetic field

Possibility to produce differents plasma conditions :

- \rightarrow Front or rear surface of the target
- \rightarrow Laser parameters (intensity, focal spot, etc ...)
- → Targets
- → Amplitude and orientation of the magnetic field

Parameters	Front surface of the target		YSO	Rear surface of the target POLAR	
	$I = 10^{12} \text{ W.cm}^{-2}$	$I = 10^{13} \text{ W.cm}^{-2}$		$I = 10^{14} \text{ W.cm}^{-2}$	
Peclet	3-5	6-9	1.10^{11}	< 1	
Reynolds	>> 100	>> 100	1.1013	>> 100	1.10^{6}
Magnetic Reynolds	> 10	> 10	1.10^{15}	1 to 10	>> 100
Mach	1 to 6	1 to 8	10-50	7-10	> 10
		>> 1 close to			
	>> 1 close to the	the source, <<1	<< 1 at	>> 1 close to the source, < 1	
σ	source, <<1 far	far	~10s AU	far	
Magnetic field 20T			Magnetic field 15T		

Collimation of Astrophysical Jets

Velocity: 100-1000 km.s⁻¹

[A. Franck et al., Protostars and Planets, University of Arizona Press (2014)] [R. D. Blandford et Payne, Mont. Not. R. Astron. Soc. 199, 883 (1982]

Disk Wind

Velocity: 100-1000 km.s⁻¹

[A. Franck et al., Protostars and Planets, University of Arizona Press (2014)] [R. D. Blandford et Payne, Mont. Not. R. Astron. Soc. 199, 883 (1982]

Stellar Wind

Stellar Wind

Velocity: 100-1000 km.s⁻¹

[A. Franck et al., Protostars and Planets, University of Arizona Press (2014)] [R. D. Blandford et Payne, Mont. Not. R. Astron. Soc. 199, 883 (1982]

Experimental set-up

• Measure of density through Mach Zehnder interferometer

Magnetized Stellar Jets

Influence of an external magnetic field of 20 T on the dynamics of the plasma

Probe beam, 10 ps → instantaneous: **density measurement**

[B. Albertazzi et al., Science 346, 325 (2014)]

Magnetized Stellar Jets

Experimental observation of the formation of a conical shock

CH target

Comparisons Simulations GORGON-Experiment

Method of simulations :

Interaction laser-solid target done by **DUED** (2D hydrorad code) simulating interaction laser-solid

Injection of 3D maps of density, temperature and velocity as input in GORGON (3D MHD code)

A. Ciardi et al., Phys. Rev. Lett. **110**, 025002 (2013)

Physical mechanism

> Magnetic field lines are frozen in the plasma and they are swept laterally by the flow.

B field lines are bent generating a radial component of B field which produce an additional radial forces and redirect the flow towards the axis.

[B. Albertazzi et al., Science 346, 325 (2014)]

Astrophysical simulations RAMSES

Important Parameters : B = 10 mG, Mass ejection rate ($M_{solaire}/an$) = 10^{-7} Ejection velocity = 130 km.s^{-1}

Similarity between experiment and simulation : 20 ns → 5.7 years

X-ray emission compatible with X-ray satellite measurements

Same conclusion as the experiment:

- **B**_{pol} can collimate a plasma flow by a recollimation shock
- X-ray emission compatible with recents astronomical observations

Dynamics and structure of magnetized reverse shock: POLAR

What is a cataclysmic variable POLAR ?

Study of Cataclysmic variable: Binary systems composed of a white dwarf accreting matter from a Sun-like star.

Two type of CVs:

B-field not sufficient: formation of an accretion disk

B-field extremly high: no formation of accretion disk POLAR type: Example AM Herculis

What is a cataclysmic variable POLAR ?

Study of Cataclysmic variable: Binary systems composed of a white dwarf accreting matter from a Sun-like star.

B-field extremly high: no formation of accretion disk POLAR type: Example AM Herculis

What is a cataclysmic variable POLAR ?

Study of Cataclysmic variable: Binary systems composed of a white dwarf accreting matter from a Sun-like star.

How to reproduce experimentally Polar system in the laboratory ?

POLAR

Experiment

Reproduce a plasma flow: irradiation of a target with a laser

Collimation of the plasma flow by **a tube or a magnetic field**

Simulate the photosphere of the WD by an obstacle

Previous work

How to reproduce experimentally Polar system in the laboratory ?

Collimation of the outflow by a magnetic field LULI2000 Experiment

[B. Albertazzi et al., submitted]

Experimental set-up @ LULI 2000

Magnetic Field up to 15 T

[B. Albertazzi et al., submitted]

Diagnostics

Diagnostics

- X ray radiography to probe the dense part of the plasma ($n_e > 5.10^{19} \text{ cm}^{-3}$)
- SOP 1D transverse to get velocity of the plasma: constraint the simulation
- 2D shadowgraphy (integrated over 200 ps) or SOP 2D transverse
- Interferometry (integrated over 200 ps) to get the density of the plasma (~ 5.10¹⁷-1.10²⁰ cm⁻³)

Collimation of the outflow by a magnetic field X-ray radiography (120 ns)

Without B-field

1 mm \overrightarrow{B} Reverse shock Obstacle 0.3 Main 0.3 target 0.2 0.1 0.1

With a 15 T B-field

[P. Mabey et al., in preparation]

Collimation of the outflow by a magnetic field X-ray radiography

Collimation of the plasma flow leading to a higher mass flux coming on the obstacle and the formation of a more visible reverse shock with higher optical emission

Collimation of the outflow by a magnetic field

X-ray radiography: reverse shock dynamics

Reverse shock dynamics

Evolution of an instability ? Or due to the holder ?

Experimental results/Preliminary analysis

Reverse shock dynamics and structure

Observations of two distincts regimes:

- A slow (~ 7 km/s) one due to plasma stagnation at the obstacle

- A fast one (~ 15-17 km/s) observed only on optical emission

Optical emission does not match with X-ray radiography → **Structure of the shock**

FLASH simulation (U. Chicago)

Initial conditions

- Multi-group diffusion approximation using 40 radiation groups
- Effective resolution 5.08 µm

Influence of the B-field

Collimation of the plasma flow by the magnetic field Reverse shock constraint by the magnetic field

Influence of radiation

To reproduce the data, radiation module should be on Structure of the shock seems to be similar to a radiative shock

Conclusion

Coupling between magnetic field and laser produced plasmas can produce plasmas relevant for astrophysical investigation (or magnetized FCI)

> Take into account all the physics Compressible, radiative MHD

Acknowledgements

A. Ciardi^{3,4}, M. Nakatsutsumi¹, T. Vinci¹, J. Béard⁵, S. Bonito^{6,7}, J. Billette⁵, M. Borghesi^{8,9}, Z. Burkley¹, S.N. Chen¹, T. E. Cowan^{10,11}, T. Herrmannsdörfer⁷, D. P. Higginson¹, F. Kroll^{10,11}, S. A. Pikuz^{12,13}, K. Naughton⁸, L. Romagnagni¹, C.Riconda¹, G. Revet¹, R. Riquier^{1,15}, H-P. Schlenvoigt¹¹, I. Yu. Skobelev¹², A. Ya. Faenov^{12,16}, A. Soloviev¹⁷, M. Huarte-Espinosa^{18,19}, A. Franck¹⁸, O. Portugall⁵, H. Pépin², J. Fuchs^{1,17}

E. Falize^{2,3}, A. Pelka⁴, F. Brack⁴, F. Kroll⁴, R. Yurchak¹, E. Brambrink¹, P. Mabey¹, N. Ozaki⁶, S. Pikuz^{7,8}, L Van Box Som^{2,3}, J. M. Bonnet-Bidaud³, J. E. Cross⁹, E. Filippov^{7,8}, G. Gregori⁹, R. Kodama¹⁰, M. Mouchet¹¹, T. Morita¹², Y. Sakawa¹⁰, R.P. Drake,⁵, C. C. Kuranz⁵, M. J.-E. Manuel¹³, C. Li¹⁴, P. Tzeferacos¹⁵, D. Lamb¹⁵, U. Schramm⁴ and M. Koenig^{1,6}

Experimental results/Preliminary analysis

Experimental observations of filamentation instability

Initial conditions

- 2D Axis symetric
- SESAME EOS
- Multi-group diffusion approximation using 40 radiation groups
- Effective resolution 5.08 µm

Influence of the B-field

Influence of radiation

σ and R_{em}

σ and R_{em}

