

PhoPs

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

ROCHESTER

Generation of strong external magnetic field at LULI

Albertazzi Bruno

L'

Magnetic meeting 23-24 April, Rochester

Outline

- Pulsed power system
- Coil able to generate up to 40 T B-field (two 5 mm diameter access)
- ≻ Coil able to generate up to 15 T B-field (three 1.1 cm diameter access)
- > Perspectives

Motivation

Build a plateform able to generate **strong external magnetic field (> 10 T)**

Huge volume (\geq cm³), constant over long time (\geq µs)

Motivation

Build a plateform able to generate **strong external magnetic field (> 10 T)**

Huge volume (\geq cm³), constant over long time (\geq µs)

Spherical expansion stopped when $\sigma \sim 1$

Collimation radius $R_{coll}(cm) \sim 0.8 [fE_L/B_0^2]^{1/3}$

Collimation time given by : $\tau_{coll} \sim R_{coll} / v_{exp}$ with $v_{exp} = 4,6.10^7 I_{14}^{1/3} \lambda_{\mu m}^{2/3} (cm. s^{-1})$

Our method

HIGH current Generation : - Build by HZDR - 250 kA maximum - Available energy : 32 kJ

- Short rise time(~µs)
- Ignitron switch

Pulsed power system @ LULI

[B. Albertazzi et al., Rev. Sci. Instru 84, 043505 (2013)] Patent: Device for magnetising laser plasma by means of a pulsed magnetic field

POWER SUPPLY

CAPACITOR C = 250µF 0...16 kV

ROGOWSKI

COIL

3~ 380 V

COAX CABLE

IGNITRON

from ignitor

Our method

Experimental Transmission chamber line Pulser

Pulsed power system @ LULI

[B. Albertazzi et al., Rev. Sci. Instru 84, 043505 (2013)] Patent: Device for magnetising laser plasma by means of a pulsed magnetic field

MAGNET COILI

GND

INTERNAL RESISTANCE

Top view

[B. Albertazzi et al., Rev. Sci. Instru 84, 043505 (2013)]

Our Method implies :

- Coil in air : NO DEBRIS
- Reduced thermal load
- Drastic diminution of risks of arcing between experimental chamber and transmission line

- 2 access of 5 mm diameter: Laser and diagnostics
- ➢ Magnetic field up to 40 T
- Constant in a huge volume (cm³)
- ➤ Easily synchronisable with the laser

Discharge with current limiter

Rise time to first peak : ~ 176 µs I/B~300 A/T, for 40 T → Imax~ 12 kA

Evaluation of the repetition rate in an experimental manner at 20 T and comparison with theoretical calculations :

Repetion rate of the order of 10-15 min at 20 T and of 30-45 min at 40 T : compatible with High powers Laser Facility

Conclusion

- ➤ Magnetic field up to 40 T
- Constant in a huge volume (cm³)
- \blacktriangleright Constant in time (> 5 µs), with less than 2% variation

However:

Restriction about access to the plasma

Coil developed by the HZDR

➤ 3 access of 1 cm diameter

- ➤ Magnetic field up to 15 T (will be improved for future experiments)
- > Constant in a huge volume (> cm^3)
- Easily synchronisable with the laser

Coil developed by the HZDR # HELMHOLTZ ZENTRUM DRESDEN

ROSSENDORE

Simulation of the coil

Rogowski measurement

Constant volume > 1cm³ Constant over 10s of µs duration

Conclusion

- ➤ Magnetic field up to 15 T (will be improved)
- Constant in a huge volume (cm³)
- \blacktriangleright Constant in time (> 20 µs), with less than 2% variation
- ➢ More access for laser and diagnostics → X-ray radiography coupled with optical diagnostics

Perspectives

Increase the available energy of the pulse power system:
Design of the coil less restrictive

Development of a coil allowing to have a transverse magnetic field (20 T) compared to the drive laser axis together with the x-ray radiography (HZDR collaboration)

Acknowledgements

A. Ciardi^{3,4}, M. Nakatsutsumi¹, T. Vinci¹, J. Béard⁵, S. Bonito^{6,7}, J. Billette⁵, M. Borghesi^{8,9}, Z. Burkley¹, S.N. Chen¹, T. E. Cowan^{10,11}, T. Herrmannsdörfer⁷, D. P. Higginson¹, F. Kroll^{10,11}, S. A. Pikuz^{12,13}, K. Naughton⁸, L. Romagnagni¹, C.Riconda¹, G. Revet¹, R. Riquier^{1,15}, H-P. Schlenvoigt¹¹, I. Yu. Skobelev¹², A. Ya. Faenov^{12,16}, A. Soloviev¹⁷, M. Huarte-Espinosa^{18,19}, A. Franck¹⁸, O. Portugall⁵, H. Pépin², J. Fuchs^{1,17}

E. Falize^{2,3}, A. Pelka⁴, F. Brack⁴, F. Kroll⁴, R. Yurchak¹, E. Brambrink¹, P. Mabey¹, N. Ozaki⁶, S. Pikuz^{7,8}, L Van Box Som^{2,3}, J. M. Bonnet-Bidaud³, J. E. Cross⁹, E. Filippov^{7,8}, G. Gregori⁹, R. Kodama¹⁰, M. Mouchet¹¹, T. Morita¹², Y. Sakawa¹⁰, R.P. Drake,⁵, C. C. Kuranz⁵, M. J.-E. Manuel¹³, C. Li¹⁴, P. Tzeferacos¹⁵, D. Lamb¹⁵, U. Schramm⁴ and M. Koenig^{1,6}