

Results of Current Polar-Drive, Exploding-Pusher Shots on the NIF

OMEGA 01/19/1996

DT neutron yield – 1.3e14

P.W. McKenty University of Rochester Laboratory for Laser Energetics NIF 10/30/2010

DT neutron yield – 2.4e14

International Workshop on ICF Shock Ignition Rochester NY 8-10 March 2011 **Summary**

NIF Polar-Drive DT gas-filled target implosions have achieved all initial design milestones

- DT-fueling of the Hoppe glass targets was conceived, engineered, tested, and implemented at LLE specifically for these NIF experiments.
- NIF DT implosions were carefully planned using several OMEGA experimental series.
- OMEGA experiments provided crucial input into the design of the NIF experiments.
- NIF scattered light measurements are in excellent agreement with SAGE predictions.
- Latest hGXi images clearly indicate self-emission lobes similar to predictions.

Neutron record of 2.4e14 was set on 10/30/2010

R.S. Craxton, F.J. Marshall, A. Shvydky, R. Epstein, A.M. Cok, J.A. Marozas, T. Collins, S. Skupsky, C. Stoeckl, T.C. Sangster, M. Bonino, R. Janacek, D.R. Harding, W. Shmayda, S. Morse, D.D. Meyerhofer, R.L. McCrory

University of Rochester

A. Nikroo, J. Kilkenny, M. Hoppe, J. Fooks

General Atomics

A. MacKinnon, S. Le Pape, R. Wallace, D. Bradley, G. Kyralya (LANL)

Lawrence Livermore National Laboratory

Simple PD designs employ existing NIF ID phase plates to access a wide range of diagnostic yield

NIC

LLE revitalized its DT-fueling capabilities and delivered DT glass targets for these experiments

Target image at OMEGA TCC

OMEGA DT series uncovered modeling issues in matching the experimental NTD burn histories

SD w/oSSD - TQ

PD w/oSSD - TQ

With improved modeling, OMEGA DT series showed excellent agreement with 1D predictions

Improvements were made in modeling glass ablators

- resolving shock transit
- opacity bug
- EOS sensitivity

The peak flux of all 3ω scattered light is measured at chamber wall (34 mJ/cm²⁾

NIC

The bulk of the DT neutron diagnostic commissioning experiments are now underway

NIC

UR W

Neutron yield results are excellent – consistently posting values to within 10% of pre-shot predictions

NIC

Latest hGXI images from NIF (110217) show prolate self-emission with density strip at equator

UR

hGXI image analysis

R. Tommasini

Image is correlated with an expanding shock front interacting with I=4 lobes of stagnating shell

NIF 110217

DRACO PD CH target

UR

R. Tommasini

Summary/Conclusions

NIF Polar-Drive DT gas-filled target implosions have achieved all initial design milestones

- DT-fueling of the Hoppe glass targets was conceived, engineered, tested, and implemented at LLE specifically for these NIF experiments.
- NIF DT implosions were carefully planned using several OMEGA experimental series.
- OMEGA experiments provided crucial input into the design of the NIF experiments.
- NIF scattered light measurements are in excellent agreement with SAGE predictions.
- Latest hGXi images clearly indicate self-emission lobes similar to predictions

Neutron record of 2.4e14 was set on 10/30/2010

Simulation of the stagnating glass shells show more prolate images than those from the GXD-2

