Three-Dimensional Distributions of Deposited Energy and Scattered Light in NIF "Exploding-Pusher" Polar-Drive Experiments

R. S. Craxton University of Rochester Laboratory for Laser Energetics International Workshop on ICF Shock Ignition Rochester, NY 8–10 March 2011

Summary

SAGE modeling of NIF "exploding-pusher" experiments is consistent with experimental scattered light observations

- The simulations combine 2-D hydrodynamics with 3-D ray tracing including all 192 NIF beam directions
- The deposited energy is ~20% higher at the equator and very uniform azimuthally
- The scattered light predicted on the NBI plates shows strong spatial variations consistent with observations

P.W. McKenty

University of Rochester Laboratory for Laser Energetics

E. Bond, S. LePape, A. J. MacKinnon, P. A. Michel, and J. D. Moody Lawrence Livermore National Laboratory

Understanding the scattered light distribution in NIF polar-drive experiments is important for two primary reasons

- By matching NBI/FABS observations to simulations one may estimate the target absorption
- For assessment of potential damage to NIF optics one needs realistic estimates of the scattered light flux

UR

"Exploding-pusher" shot 100823 used a ramp laser pulse

LL

Run 5857 TC9209

The polar-drive design involves defocusing and repointing the NIF beams, using the indirect-drive phase plates

The cumulative deposited energy is ~20% higher at the equator and very uniform azimuthally

The deposited energy patterns of the individual rings combine to give a total deposition that is ~20% higher at the equator

Run 5857 TC9212

Rings 3B and 4 from the upper and lower hemispheres combine well at the equator

The azimuthally averaged center-of-mass radius at 1.6 ns is uniform to 3.4 μm (rms)

LL

Averaged over the sphere, the center-of-mass radius is uniform to 3.6 μm

The cumulative scattered light is concentrated in a narrow range of angles θ sampled by the two NBI plates

The contributions of the individual rings to the cumulative scattered light can be identified

Run 5857 TC9217

The calculated scattered light on NBI plate B31B shows significant structure

The calculated scattered light on NBI plate B31B shows significant structure

The SAGE simulation of the B31B NBI image is consistent with the experiment

Run 5916 TC9220

The calculated scattered light on NBI plate B36B shows a strong top-to-bottom variation

LLE

200 190 180 kJ/sr 100 6.0 Equator 120 50 5.0 4.0 Y (cm) 0 3.0 130 2.0 -50 1.0 South pole 0.5 140 -100 **-100** -100 50 100 -50 0 X (cm) Run 5916

TC9221

The calculated scattered light on NBI plate B36B shows a strong top-to-bottom variation

200 190 180 kJ/sr 100 6.0 Equator 120 50 5.0 4.0 Y (cm) 0 3.0 130 2.0 -50 Beam Q21 T-D 1.0 South pole (0.7 kJ/sr) 0.5 140 -100 **-100** -100 50 100 -50 0 X (cm) Run 5916

TC9222

LLE

The SAGE simulation of the B36B NBI image is broadly consistent with the experiment

LL

SAGE modeling of NIF "exploding-pusher" experiments is consistent with experimental scattered light observations

- The simulations combine 2-D hydrodynamics with 3-D ray tracing including all 192 NIF beam directions
- The deposited energy is ~20% higher at the equator and very uniform azimuthally
- The scattered light predicted on the NBI plates shows strong spatial variations consistent with observations

Comparisons with NBI/FABS measurements may enable the target absorption to be estimated.