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Adequate Control of Laser-Plasma 
Instabilities is Required to Achieve Indirect-
Drive Ignition 	


inner 
beams (l0)	


outer 
beams (l0-
l)	


x-beam 
transfer	


SRS	


• Energy coupling should be > 90% to 
achieve required Trad	


• Implosion symmetry requires 
controlled power balance between 
“inner” and “outer” beams (x-ray flux on 
equator vs. poles)	


• low capsule preheat (Thot, fhot)	


• these requirements translate to control	

of SBS, SRS, 2p, filamentation,	

beam-steering, cross-beam energy 
transfer	
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SRS Spectra from the Inner Cone Beams 
on the NIF Show Alarming Levels With 
Unpredicted Features 	
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3 Measured streaked spectrometer data 

N091204  “1MJ shot”	
 The SRS reflectivity 	

at these high intensities	

is alarmingly high: > 40%  	
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Single beam SRS Gain 
spectrum from LIP	




BBA STUD Pulses July 2009	

4 

Most Prominent LPI Processes Are: 
SRS, SBS, 2p, Filamentation 

SRS	

Very dangerous Instability for indirect drive ICF. Did in the Shiva Laser at 1 µm back 	

in the 70’s. Almost equal amounts of hot e- generation and Backscattering	


SBS	

Very dangerous Instability for indirect drive. Almost all the energy goes to the scattered	

light wave. Velocity gradients can potentially tame it. 	


2p	

Very dangerous instability for direct drive. It has the lowest intensity threshold, all the energy	

goes to coherent high frequency oscillations of the plasma and then perhaps to IAWs	

but with preheat getting you first.	


FIL	

Breakup of the laser light into dancing filaments. Really a 4 wave process	

including both Stokes and Anti-Stokes components interacting with a 	

degenerate zero frequency IAW. Related to Self-Focusing in classical NLO.	


� 

EMW→ EMW + EPW

� 

EMW→ EMW + IAW

� 

EMW→ EPW + EPW

Trad, symmetry, preheat	


Trad, symmetry	


preheat	


symmetry	
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Direct Drive w or w/o Shock Ignition 
Also Requires LPI Control	
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• If we do not keep the growth of parametric instabilities under strict control during the	

   main pulse, then the hot electron preheat will make the final shock have dubious prospects.	


• Worry about SRS and 2p as the two most likely hot electron generating instabilities 	

   via their plasma waves daughter waves. ���

• Worry about the physics of multiple of massively overlapping beams, hot spots overlapping,	

   triggering each other’s instabilities, nonlocal influences in space, mediated by hot electrons,    	

   secondary instabilities, SRS/SBS anti-correlation, ...	


• This is not your grandfather’s LPI scenario.	


• For shock ignition, need to convert the right distribution of hot e-s into a sharp heat front that 	

   becomes that last shock, quickly assembled. Designing this is a wonderful challenge of our  	

   knowledge of LPI physics. 	


• What wavelength to use for the last shock, what pulse shape, what intensity regime, all remain 	

   open and exciting questions. 	




Typical Shock Ignition Parameters 
and Profiles	
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Outline	

•   STUD pulses: Spike Trains of Uneven Duration and Delay for the control of LPI in 

DD, ID, SI, Green driven ICF, etc.	


•    STUD pulses are designed laser pulse shapes that adaptively mitigate LPI as plasma 
conditions change.	


•    A theoretical model that contains the essential elements of this new approach 
including the role played by Gaussian random fields and hot spot recurrence time 
estimates. 	


•    Numerical simulations of SBS in structured beams comparing Continuous RPP 
pulses to highly modulated STUD and pseudo STUD pulses with or without pump 
depletion. In Pseudo-STUD pulses, the pulse is modulated in time just as in a STUD 
pulse but the speckle patterns are not changed in between successive spikes.	


•    Note the cumulative effect of stationary and repeatedly driven IAWs or EPWs in 
RPP or SSD beams is eliminated in STUD pulses since the hot spots move around 
randomly from spike to spike and don’t come back to the same locations before the 
plasma modes are damped if trecur > tdamp > tspike > tgrowth.	
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A New Approach to LPI Control	


•  Instead of just phase control (in space-time) through masks and electro-
optic modulators, or the all purpose PS solution, it is worth exploring the 
intentional variation of the amplitude and duration of short bursts of laser 
light ==> STUD pulses: Spike Train of Uneven Duration or Delay.	


•  Use variable width spikes to last 4-8 growth times of the most unstable 
mode to be avoided, and then shut off the pump long enough to disallow 
self-organization of plasma into coherent large amplitude waves which can 
then do real damage, and then repeat.	


•  Divide and conquer the laser’s propensity to whip the entire plasma up 
into a coherent pump driven LPI haven. Start and stop the interaction 
processes to avoid cumulative damage. Three main reasons you win 
with STUD pulses: Don’t allow growth in entire hot spot, avoid hitting the 
same driven wave by the same or similar hot spot over and over again, 
damp the wave between recurrence of hot spots to the same location as 
previously driven waves.	




Three Physical Mechanisms Are Primarily Responsible���
for Producing Unprecedented Control of Laser-Plasma ���
Instability with STUD Pulses ���
(Pump Depletion PD or NPD, Self Focusing SF or NSF)	

•  By turning the pump on and off on a time scale short compared to the 

hot spot traversal time, get lower gains per hot spot. (STUD and 
Pseudo-STUD, SDL and WDL)	


•  By turning the laser off roughly half the time, you allow time in 
between spikes for the driven EPWs or IAWs to damp. No damping 
effect exists in the Rosenbluth Gain model of parametric amplification 
in an inhomogeneous linear profile plasma for a continuous pulse. 
(STUD and Pseudo-STUD, SDL only)	


•  By scrambling the hot spots around in space between spikes, break 
the repeated growth of locally driven EPWs and IAWs when the pump 
is on at the same place all the time. Recurrence time being long wins. 
(STUD, SDL mostly)  	
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Highlights of What Lies Ahead with 
Designed STUD Pulses, All Absent in 

Present Illumination Schemes	

•    STUD pulses: Spike Trains of Uneven Duration and Delay may help control 

LPI once and for all in DD, ID, SI, Green driven ICF, hotter holraums. 	

•    Can we systematically avoid absolute instabilities (no coherent feedback allowed)? 	

•    Can we limit or halt the growth of convective instabilities?	

•    Can we take advantage of plasma wave damping even in inhomogeneous plasmas 

(beat the MNR model oddity that damping never affects gain even in the SDL)?	

•    Can we take advantage of the dancing beamlets scenario of plasma induced laser 

incoherence generation in order to decorrelate successive spikes in a STUD pulse?	

•    STUD pulses allow Green Laser use for Indirect Drive. 	

•     Allow LEH LPI Control (turn on, or switch off) for Indirect Drive.	

•     Allow Overlapping Beam LPI Catastrophe to be averted in direct drive.	

•     Allow restraining hot electron generation at first for Fast or Shock ignition  	

      and hot electron unleashing at the end of a Shock Ignition pulse.	

•    Allow hotter hohlraums, thicker ablators, solve the ablator-fuel mix problem. 	
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STUD Pulses Address Overlapping 
Beam and Beam Crossing Problems 
that Adversely Impact ICF and IFE	


• By interleaving inner and outer cone beams in time, with STUD pulses where 	

   the spikes do not overlap in time, we control the crossing beam interactions at the 	

   LEH which has its own logic in conventional long pulse, illumination schemes.	


• By randomly offsetting the STUD pulses in different overlapping beams in 	

  DD ICF, we drastically reduce the possibility of symmetric mutually driven modes	

  by reducing that symmetry by a factor as large as a square root of N, where N is the	

  number of overlapping beams.  

• From exp[N 0 t] to N/2 * exp[2 0 t] is an increase in control that is substantial.	

Since N can be 1000 or more, ln[N] / N can be smaller than 0.007:  OPT FOR 	

INCOHERENT ADDITION of ELEMENTARY GROWTH SPURTS.	

• The option to consider Green or Red lasers for IFE and ICF become possible.	
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I < Ithr, single-beam simulation!
No filamentation!

I < Ithr, non-resonant, lower amplitude!
counterpropagating beam seeds enhanced scatter!

0                  x/0            500!

Single beam, I < Ithr, steady state response!
I > Ithr, nonstationarity & “dancing!
beamlets” are unavoidable!

2000!

z/


0!

1000!

0!
0                  x/0           500!

Schmitt & 
Afeyan,  
PoP 5, 503 (1998) 

Understanding the Coherent and Incoherent Interactions between  
Multiple Crossing laser Beams Is an Outstanding Challenge in NLO!

•  Filamentation strongly affects the initiation and evolution of SRS and SBS 
backscatter as well as beam pointing.!

Dancing  
Beamlets 

BBA STUD Pulses	
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What Do STUD Pulses Look Like?	


BBA STUD Pulses	

13 

Polymath
Research Inc.

!
pe
2 = 4"ne e

2

me

e2

!c
#
1
137

� 

Io
n( ) × twidth

on n( ) = Io
n+1( ) × twidth

on n+1( ); ∀n

� 

I0 t( ) =
n=1

NSPIKES

∑ I0
(n ) exp −

t − tc
n( )

tW
n 2( )

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2σ n

� 

twidth
on n( ) + twidth

off n( ) = twidth
on n+1( ) + twidth

off n+1( ); ∀n

0

0.2

0.4

0.6

0.8

1

30 31 32 33 34 35

STUD Pulse Shape 10% Random Modulation
 of a 50% Duty Cycle

I 0(5
0%

+/
-1

0%
) (t)

Time (in Hot Spot Traversal Time Units)

0

0.2

0.4

0.6

0.8

1

5 5.5 6 6.5 7 7.5 8

STUD Pulse Shape 10% Random Modulation
 of a 50% Duty Cycle

I 0(5
0%

+/
-1

0%
) (t)

Time (in Hot Spot Traversal Time Units)



What Do STUD Pulses Typically Look Like?	
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How Do We Generate STUD Pulses? ���
4f or 6f System of USP Laser	
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Wiener, Ultrafast Optics, 2009 
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SRS and SBS in the Strong Damping 
Limit Driven by STUD Pulses: An 
Analytically Solvable Nonlinear Model	
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The Gain Exponent of SRS or SBS in the 
Strong Damping Limit is Made Up of 
Individual Elements of this Form	
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A Hierarchy of Scales and Models 
Exist to Capture the Physics of SBS or 
SRS at Higher and Higher Intensities	
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• WDL: IAW / 0 << 1  G ~ 0
2/’V1V2 but also, the possibility of an absolute 

instability	


• SDL:   IAW / 0 >> 1  G ~ 0
2 / ’V1V2 without absolute instabilities. 	


• WCL: 0/IAW <<1     G ~ 0
2/’V1V2 easy to violate in hot spots.	


• SCL: 0/IAW >>1       G ~ 0
2/3 +  laser intensity dependent IAW frequency shifts.  	


   Multiple resonances in an inhomogeneous flow profile. 	


• PD or w/o PD: Clamp Gain to Reflectivity < 1 values or arbitrarily large growth or 	

   need to model IAW nonlinearity.	


• SF or w/o  SF: SCL & FIL in nonuniform flow interesting nonstationarity results:	

  No longer GRF. Prominent tails develop. New regimes of statistical behavior.	


• Single Beam vs Overlapped Beams. Easy to get off the GRF reservation.	




What Do Structured or Speckled RPP/
DPP/CPP Laser Beams Look Like?	
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We Can Detect the Hot Spots and 
Classify Their Properties	
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Once You Detect the Hot Spots You 
Can Classify Their Properties	
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Two Realizations of Sections of f/20 Beams 	
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Statistical Properties of Two Independent 
Realizations of RPP f/20 Beams 	
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The Number of Hot spots Whose Peak Intensity is Greater 
than u Is Estimated for a Complex Gaussian Random 

Field with a Gaussian Covariance Matrix to Be:	
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SBS Normalized Effective Gain Exponent <GSBS>Norm for RPP 
Beams, STUD and Pseudo-STUD Pulses in the Strong Damping 
Limit, f/8, vs G_SBS_HS: No PD (Picket Fence)	
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Ratios of Effective Gain Exponents <GSBS>Norm in the Strong 
Damping Limit, f/8, vs G_SBS_HS: STUD/RPP, Pseudo-STUD/ 
RPP & STUD / Pseudo-STUD (NPD) (Picket Fence)	
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Summary: Use STUD Pulses	


Polymath
Research Inc.

!
pe
2 = 4"ne e

2

me

e2

!c
#
1
137

BBA STUD Pulses	




3 Major Experimental Tools Are Needed 
in Order to Explore the Effectiveness of 

and to Optimize STUD Pulses in the 
Green	


•  Need ps time scale Thomson Scattering capability	

•   Need ps time scale backscatter streaked spectrometry	


•   TIME LENSES will allow STUD pulse design at longer 
time scales compressed down to psecs AND the dilation of 
Raman and Brillouin scattered signals so that an 
instrument with 50-100 psecs time resolution is enough.	


•  Need a tunable short pulse OPO for pump-probe 
experiments where small signal gain can be measured once 
STUD pulses control the instability and direct measurements 
of the plasma distribution function become possible. 	
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How Do Time Lenses Work?	
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Schematic diagram showing the concept of temporal magnification, or “Time-Lens”, 
using nonlinear optical mixing in a waveguide. The scanning delay line allows a 
delay between the measurement window and the input pulse. The measurement 
window is as large as 200-ps, with <1-ps resolution on a single shot. The nonlinear 
wave guide mixes the linearly chirped pulse with the input pulse,  encoding the time-
dependence of the input pulse on the chirped pulse. The input pulse is filtered out, and 
the encoded chirped pulse stretches out in time via linear dispersion in a long 
fiber. The stretched pulse is then measured using a conventional oscilloscope. 
Temporal magnification up to M=500 have been reported.  

“High-speed optical sampling using a silicon-chip temporal magnifier,”  
R. Salem, M.A. Foster, A.C. Turner-Foster, D.F. Geraghty, M. Lipson,  
A.L. Gaeta, Optics Express 17, 4324 (2009)  


