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Laser pulse shape for the all-DT design uses a picket + 3 
pedestals for fuel compression  

•  Triangle picket!
•  Sets adiabat!
•  Smoothes laser imprint!
•  Sets shock breakout time!

•  3 pedestals!
•  “foot,” “shock 2,” “shock 3”!
•  Compress fuel in-place to high density!

•  Moderate intensity main compression pulse!
•  Implodes target!
•  Less intense, slower implosion than 
conventional “fast compression”!
•  Large ρR, but temperature too small to 
burn!

•  High intensity shock!
•  Launches a strong shock!
•  Additional compression!
•  Temperature > 10 keV!



NIF is a viable platform for demonstrating shock ignition 

•  Polar direct drive configuration!

•  24 compression quads focused at initial radius!

•  24 shock quads focused at shock-launch radius!

•  Sufficient energy !
•  ~0.6MJ for near-term high-gain targets!
•  ≥1.3 MJ for high yield designs!

•  Strong ignitor shocks due to !
•  large peak power (400 TW)!
•  250 ps rise time (upgradable to 100ps?)!

•  Would need a new cryostat!



Slow, thick DT ablator design should mitigate Rayleigh-Taylor 
growth during implosion phase 

240 μm DT ice 
0.25 g/cc #

760 μm DT gas#
0.3 mg/cc#

10 μm CH#
1.0464 g/cc  #

Aspect Ratio 3.16 

Implosion velocity (km/s) 303 

In flight adiabat 1.56 

Max rhoR 1.95 

Convergence ratio 32 

IFAR (at 2/3 r0) 20 

Yield (MJ) 32 

Gain 52 

Compression energy (kJ) 308 

Shock energy (kJ) <300 

Total energy (kJ) <608 

Integrated laser energy 
efficiency 

56% 

Segment Power (TW) Launch (ns) 

Picket 8.55 0. 

Foot 0.75 2.85 

Shock 2 3.48 8.08 

Shock 3 16.15 9.85 

Main 115. 10.85 

Shock (all beams) 350. 13.41 



Updated target improves on previously circulated all-DT design 

Changed Quantity Old Target Updated Target 
Electron Flux Limiter 100% at late time 6% sharp cut-off, all times 

DT Gas Density 0.2 g/cc (IFE specs) 0.3 g/cc (NIF quench specs) 

Beam Intensity Profile Skupsky’s NIF fit Shurtz’s fit to Craxton’s  
PD pointings 

Picket shape Zero rise-time flat-top Finite rise-time triangle 

Main pulse power 95 TW 115 TW 



Polar drive intensity profile results in lower drive efficiency 

Skupksyʼs NIF fit# Shurtzʼs fit to Craxtonʼs #
PD beam pointing#
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•  Need 2D laser intensity (radius, angle of 
incidence) to reasonably approximate PD laser 
absorption!

•  Refraction and shrinking targets amplify 
difference in efficiency!

•  Main pulse power increased to take advantage of 
larger efficiency at beginning of main pulse!
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Laser pulse tuning 

•  Time picket and 3 compression pedestal shocks to 
coalesce at gas/ice interface at same time!

•  Maximize ρR(main launch time, main power) for fixed 
compression energy!

•  LPI thresholds limit main power!
•  Falling laser efficiency !

•  Scan yield(shock launch time, shock power) for fixed 
shock energy!
•  Shock power based on:!

•  Yield!
•  Ignition window!
•  Optics damage threshold!

•  Actual laser energy used less than design 
assumptions!

•  Shock pulse starts before compression energy 
exhausted!
•  Shock remains on after burn initiates!
•  607kJ / 700 kJ for current design!



Higher intensity main pulses have larger ignition windows and 
comparable yield 

No Rayleigh-Taylor in 1D!
~<400 kJ compression energy!
300 kJ shock energy!

Main Pulse Power!

Shock start time relative to “end” of main pulse#

Shock power#



Deceleration Rayleigh-Taylor and fall line behavior  

•  Interface between the hot spot and decelerating 
fuel is RT unstable!

•  Projecting peak velocity to r=0 is a useful 
metric for tracking RT growth!

•  Timing of igniter shock determines when on fall 
line burn initiates!

•  Optimal 2D/3D/reality shock timing may occur 
early within ignition window!

Large RT 
growth#

Small RT 
growth#



Physical processes modeled by the HYDRA code 
for ICF simulations 

Author—NIC Review, December 2011 10 NIF-0000-00000s2.ppt  

Laser light! Magnetic fields!
Burn products!

3D ray tracing!
Spherical DD!

raytrace!
3D MHD Resistive  

General circuit model!

TN reactions  
Multi-group diffusion CP!

Free streaming neutron transport!
Monte Carlo transport of 

neutrons, gammas, 
charged particles!

Ion beams!
3D ray tracing!
Monte Carlo!

Radiation!
Single group diffusion 
Multi-group diffusion 
1D/2D multigroup SN!

IMC!

Electrons!
Thermal conduction!
Multigroup non-local 
Relativistic PIC (link)!

Atomic physics!
Analytic EOS!

Tabulated EOS 
Inline QEOS!

Tabulated LTE opacity!
TABOP!

Inline LTE & non-LTE!
XSN!

DCA NLTE!

Hydrodynamics!
Lagrange + ALE!

Automatic mesh motion!
Block structured mesh 
Reduced & enhanced  

Connectivity!
Shape generation lib. 

Isotropic strength 
Atomic mix model!

Ions!
Thermal conduction!

Slide courtesy of Marty Marinak#



Early time resolution of the critical surface is hard 

•  Folklore: outer surface of ablator 
should have ~0.1 μm wide zones!

•  “Thick” zones seem to poorly resolve 
critical absorption for picket!

•  Energy deposits deeper than critical 
surface, leading to faster shocks!

•  Shifts shock tuning, but small effect 
on target performance!

•  Suggestions/experience from the 
audience?!

0.1 μm #

0.03 μm #

0.01 μm #



Work left to be done 

•  Finish transition to HYDRA!

•  Fill out 1D gain curve of hydrodynamically equivalent all-DT  targets!
•  Scale target quantities by factor “s”!

                              at ~constant IFAR, v, CR, α	


•  Expect                                               (but need coefficients!)!

•  2D stability (single mode→ multimode)!

•  Optimum beam pointings, focusings and time-dependent powers (laser PD uniformity) for 
entire implosion!

•  Iteration between 3D beam pointing constraints and 1D target build/pulse shape!
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