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Overview: shock ignition targets designed for high gain with KrF
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we have studied shock ignition designs: 335

* low-aspect (AR=2.5) foam/DT targets
« driven by 248 nm KrF light
* laser spot size is zoomed twice
* target mass varied by a scale factor of 32
(scale 1 = ~250 kJ - scale 32 = ~3 MJ targets)
« target adiabat is kept moderately low (a~2)




Extensive 1D runs map out the parameter
range for shock ignition targets
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The process is repeated for different compression powers,
and an optimized gain if found for a particular target
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The process is repeated for each target and
produces a gain curve
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The shorter wavelength and zooming give a significant
advantage to targets driven by KrF light

The scale 1 target was simulated with frequency-tripled Nd:glass laser drive; the
pulse shape was changed so the drive pressure was the same.
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2D High-resolution simulation (/=1-256)

Three different sources have been simulated: outer and inner surface
perturbations and laser imprint. RO
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2D High-resolution simulation (/=1-256)

Three different sources have been simulated: outer and inner surface

perturbations and laser imprint.
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2D High-resolution simulation (/=1-256)

Three different sources have been simulated: outer and inner surface
perturbations and laser imprint. RO

0.49 um rms outer surface 1 um rms inner DT-ice surface 1THz ISI
(=0.125 pm rms in solid CH)
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Final structure of perturbations reflects applied structure
» Outer surface spectra is dominated by low modes
e inner surface perturbation has a flatter low-mode spectrum,
isn’t amplified until feed-out, and doesn’t get pushed as far
* laser imprint has flat spectrum and is reduced by large number of beam overlaps
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2D High-resolution simulations (¢=1-256)
The target is robust to inner surface DT-ice perturbations

densities shown as pellet ignites
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2D High-resolution simulations (¢/=1-256)

Doubling the outer surface perturbations causes gain failure
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2D High-resolution simulations (¢/=1-256)

...But increasing the ignitor power restores significant gain
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2D High-resolution simulations (¢/=1-256)

The target survives nominal inner, outer surface finishes
+ laser imprint combined and maintains high gain
QR D
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Summary of target issues and mitigation strategies

Issues Tools

Hydrodynamic stability Adiabat shaping:
Relaxation pulses, decaying shocks (laser pickets)
Thin High-Z cover layers
Low density foams
Increase pellet adiabat
Small laser wavelength (more ablative stabilization)
Larger ignitors
Target geometry (lower aspect ratio)

Symmetry Larger ignitors
Target geometry (lower aspect ratio)

Coupling/LPI Minimize laser wavelength

High laser bandwidth

Ablator composition
Compression/ignitor energy trade-off
Target geometry (higher aspect ratio)




LPI during the compression pulse?

Fast electrons can preheat the fuel and prevent compression.

Instabilities at the quarter critical surface often have the lowest intensity
threshold. E.g., the two plasmon (pre) decay threshold is™:
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This simple formula has (so far) been unreasonably effective in predicting the
intensity threshold of the occurrence of instability at n /4 in a variety of experiments.

The impact of LPI will depend upon the number and energy of hot electrons
generated, which is still quite unknown.
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To date, two plasmon decay experimental data shows that
simple formula seems to predict threshold

Nike experiments (J. Weaver et al.) also

Omega experiments show 2w
© show 2w near simple threshold
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The baseline shock ignition target Is above the predicted
2w, threshold during compression

baseline ~ 500 kJ shock ignition target
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The baseline shock ignition target is further above Zoope
threshold during compression for 0.351nm light.
QIR LD

baseline ~ 500 kJ shock ignition target
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Higher-Z DT/foam ablators: LPI is reduced but

So is drive pressure

QIR L

Ablators are formed from different density foams (50 mg/cc - solid) which are
filled with DT and frozen. CH and SiO,, foams are shown here.

(smaller DT fractions are more absorptive)
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Higher-Z DT/foam ablators: constant drive pressure requires
more energy & negates most LPI mitigation

If we change the laser pulse so that the drive pressure is constant, more
energy Is needed and the change in LPI risk is minimal
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Increasing the initial Aspect Ratio (AR) allows one to use
lower drive intensities and decrease LPI risk
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Increasing the initial Aspect Ratio (AR) : the problem is

significantlx worse with 351 nm Ii=ht &
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Increasing the initial Aspect Ratio (AR) gives higher-
In the target

mode (small wavelength

AR = Router'Rinner
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Effects of lower intensity: 2D simulations of higher
aspect ratio (AR) targets show greater growth of RT
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Higher aspect ratios are more distorted at ignition

time and need more ignitor power

Example: AR=2.5 (baseline) vs. AR=3.74
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Summary

We’'ve designed a variety of shock ignition targets.

The performance of these target is predicted to be good if
nominal constraints on surface finish, optical smoothing are
obeyed.

More energy in the ignitor pulse cures most problems.

One of the biggest unknowns in the designs are due to laser
plasma instabilities. LPI will determine the maximum
allowed drive intensity during compression.

-> the pellet aspect ratio
-> hydrodynamic stability

Absorption physics (nonclassical) during the ignitor shock is
also uncertain
and may be important.
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How efficient are we in assembling the fuel?
QIR LD

The pulse efficiencies can be calculated from the simulations
-- measure hot spot and cold fuel energy at ignition time
-- use a pulse without an ignitor spike

Conversion efficiency for the compression pulse is
relatively low because of the low implosion velocities

cold fuel conversion efficiency Hot spot conversion efficiency
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Power

How efficient are we in assembling the fuel?

QIR L

The pulse efficiencies can be calculated from the simulations
-- measure hot spot and cold fuel energy at ignition time
-- use a pulse with an ignitor spike

Hot spot conversion efficiency for the spike ignitor pulse,
though small, is much higher than for compression pulse.
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What could possibly go wrong?
P Y9Q 9 -

These 2D target simulations did not include beam power
Imbalance, beam mispointing or target displacement (¢=0)

Convergence Ratio (CR) is high for these targets -- more sensitive
to large wavelength perturbations (such as those above)

LPI may limit intensity to values below those assumed here
- solved by increasing target size -> more hydro-instability

Nonlocal electron transport an issue?



An important constraint for shock ignition is the
high convergence ratio

This is not a hydro instability problem;
it is a problem of “aiming” the shell pieces at r=0

t = ignitor shock + 400 psec

t = ignition



How can we compensate for high convergence ratio?
QR D

1. More spike power

2. Design for larger convergence ratio:
To make a larger hotspot, mistime the main pulse (by ~ -1.2 nsec)
» the main shock overtakes the foot shock prior to shock breakout.
* more inner edge of fuel shell joins hotspot, making it larger.

Convergence Ratio vs. Gain
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Creating a larger hot spot by mistiming
reduces the convergence ratio but also
reduces the gain.



ELaser (KJ)

2D simulations do not support designing for
lower CR via mistiming

(results from many low-mode (¢=1-8, 64 pt) simulations)
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As perturbation increases, more laser energy (in spike) is needed.
However, the lower CR does not decrease the sensitivity.

For lower CR, the resulting gains are lower
-- at ALL asymmetry levels

Best option to handle low mode asymmetry:
Increase spike energy




Mitigation strategies for LPI during the compression pulse?
The impact of LPI will depend upon number and energy of hot

electrons generated, which is still quite unknown. However, the

drive intensity during compression may have to be lowered if LPI
proves problematic.

How can we lower the drive intensities?
Three possibilities are investigated here:

1. Use as short a laser wavelength as possible.
(lthreshold ~ 1/A0)

2. Increase absorption (higher Z ablators) to limit
intensity at n_/4.

Smalyuk et al., Phys. Rev. Lett. 104, 165002 (2010).
3. Redesign the target for lower intensity / drive pressure.
- lower compression intensity, larger ignitors

- larger targets and higher initial aspect ratios



Another option to reduce intensity: use smaller
compression power -- but a larger ignitor power
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Compared to KrF, frequency-tripled glass lasers will find
It more difficult to stay below 2wye thresholds

__baseline ~ 500 kJ shock jgnition target

20 ——— ]
I IntenSIty predicted I/IZmpe-threshoId
4 3
15+ — T ;
o target drive pressure ; .. ~80 kev :
£ is the same ] 3 15 AL E
O Hm —d,um :
= 10 — :
< 3]
° ? ;
: —
1 E
0 < . 0 A . -
0 5 10 15 20 0 5 10 15 20
time (nsec) time (nsec)
5 — T T 1 10 [ — 7 T
density scalelength E [ Electron Temperature
4 3 8l -
/é\ é — L
5 3 E E’ 6 scale 2 target ]
o 3 ~—"
S ] o [ .
< 2 _ =4[ KrE (248 nm): h
ity E - Nd:Glass (351 nm):
1 3 2 T -
0 5 10 15 20 0 5 10 15 20
time (nsec) time (nsec)

all quantities measured at n /4

rms_1d WLAZ=0.351 um: 20101012131506 Wed Oct 13 11:29:10 2010

ge 5_parms_1d WLAZ=0.25 um: 20090226134930 Wed Oct 13 11:29:17 2010



	title
	Target Overview
	1D SI scans
	compression scan
	SI Gain Curve
	KrF vs Nd:Glass example
	3 perturbs
	3 perturbs 2
	3 perturbs 3
	Perturbations
	inner ice perts
	Doubling surface pert
	Double Surf Pert + Ignitor
	2D-nominal ok
	Target mitigation
	LPI-Compression
	2wpe Experiment
	2wpe_SI_target
	2WPE_SI w/GLASS
	Ablator/foam 2
	Ablator/foam 3
	AR_change 1
	AR change 2
	AR Change 2
	low_Intens_RT_growth
	AR_compare_2D
	Summary
	Slide #28
	Efficiency 1
	Efficiency 2
	Slide #31
	problems?
	CR illustrated
	CR 2
	CR 3
	LPI Options?
	Intensity: vs Compression Intensity
	2PWE: KrF vs Glass

