Polar Drive Backlighting

Backlighting of Polar Driven implosions on OMEGA
have led to precise comparisons with 2-D simulations
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 Low mode perturbations of the shell, due principally to illumination
nonuniformity, are easily measured with time-resolved x-ray
backlighting.

« 2-D DRACO simulations match the observed shell perturbations
in time and shape with some small differences in mass distribution.

» Using beam pointing alone the L=2 perturbations have been minimized
leaving only L=4 and higher harmonics.



40 of the OMEGA beams are used to emulate
the NIF 48 beam indirect-drive configuration
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» The OMEGA beams, in six rings
from 21° to 59°, are used to
emulate the NIF geometry.
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* Additional OMEGA beams are
used for x-ray backlighting.




Abel inversion can be used to determine

the plasma density from x-ray radiographs*
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Absorption of backlighter x rays along a path follows the relation
I=1,exp [—ffc(E, r)dz].

The inverse Abel transform gives the radially dependent opacity
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If the mass absorption coefficient is approximately constant through the
plasma, as is the case for bound-free absorption by inner-shell electrons,

then p(r)=K(E.r)/ s (E)

where L(E) is the mass absorption coefficient averaged over the
effective energy band of the radiograph, and can be determined as
follows:
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E18411 *F. J. Marshall et al., Phys. Rev. Lett. 102, 185004 (2009).



Low adiabat a~3, median convergence ratio c,~13

Abel inversion is used to compute the density profiles
from framed x-ray radiographs of a polar-driven,
direct-drive implosion
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X-ray radiographs from OMEGA shot 49331
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Low adiabat a~3, median convergence ratio c,~13

The density distributions are determined for each time
from the radiographs and can be compared to simulation
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S *F. J. Marshall et al., Phys. Rev. Lett. 102, 185004 (2009).



Low adiabat a~3, median convergence ratio c,~13

The measured areal-density time history is consistent

with 1-D simulations up to bang time
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Low convergence ratio c,~10
For the pointing cases with no azimuthal variation the

polar-drive implosions varied from oblate to prolate
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Low convergence ratio c,~10

Framed backlit images and DRACO simulations agree
well for oblate- to prolate-shaped PD implosions
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Low adiabat a~3, median convergence ratio c,~13

The observed shell perturbations are accurately
reproduced by DRACO 2-D simulations
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OMEGA shot 49331, PD implosion
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E18413 F. J. Marshall et al., J. Phys. IV France 133, 153 (2006).



Low adiabat a~3, median convergence ratio c,~13

Low-mode perturbations of the hot spot are determined
from framed x-ray images of target self-emission
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Low adiabat a~3, median convergence ratio c,~13

The observed hot-spot perturbations deviate
significantly from DRACO 2-D simulations
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OMEGA shot 49331, PD implosion
Framed x-ray images 2- to 4-keV emission

2.40 ns 2.46 ns
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The differences in
measured and simulated
shapes may be due to
the stalk, whose effect

is not included in the
simulations.
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High convergence ratio c,~18, slight L=2 (prolate)

First experiments and simulations indicated that
an L=2 component was present in the implosions
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High convergence ratio c,~18, slight L=2 (prolate)

Modal decomposition of the results and simulations
Indicated both a small L=2 and a larger L=4 component
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High convergence ratio c,~18, minimum L=2

The measured and simulated radiographs exhibit nearly
Identical shapes for the 30,150,150 beam pointing case
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High convergence ratio c,~18, minimum L=2

The modal decomposition of 30,150,150 pointing case

agrees well with the DRACO simulation
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