Shock Ignition with Plastic-Ablator Cryogenic
Shells on the NIF
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Summary

Plastic-ablator cryogenic shock-ignition designs for the NIF
are predicted to be robust at sub-MJ energies
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» Targets are tested for robustness using a 1-D, clean-volume model to
determine the minimum yield-over-clean (MYOC) required for ignition.

* Implosions at 600 to 700 kJ are predicted to be robust to
— Spike pulse mistiming of 700ps.
— Hot-electron energy deposition in the shell.
— lgnition threshold factor (ITF) for this target is 3.0.

« 2-D DRACO simulations indicate robustness to rms ice roughness up
to 3.5 um.

« Polar-Drive pointing schemes are currently being investigated in
DRACO
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Large hard x-ray signals in OMEGA experiments may
indicate preheat from LPl-generated hot electrons
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OMEGA implosions with thick plastic ablators
produce fewer hard x rays from hot electrons.

A V. Maximov af al., Bull. Am. Phys. Soc. 52, 196 (2007).



A thick plastic-ablator shock-ignition target for the NIF
has been designed using existing NIF phase plates
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In one dimension, polar drive energy losses are approximated
by using a fit to 3-D ray histogram of ray impact parameters
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The 1-D ignition-threshold factor (ITF) can be calculated
from the minimum yield-over-clean (MYOC) required

for ignition
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* Varying the YOC'as an input parameter, one finds the minimum
YOC required for ignition
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« 2-D DRACO simulations have validated this model for other designs*

‘K. S. Anderson et al., Bull. Am. Phys. Soc. 54, 306 (2009).
TCAST0a P. Chang, K. Anderson, and R. Betti, Bull. Am. Phys. Soc. 54, 260 (2009).



Plastic-ablator shock-ignition targets are robust to shock
timing and reduced clean volumes
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ITF for indirect-drive point design®
is ~5.3 (MYOC = 33%) at 1 MJ.

*J. Lindl, presented to the JASON Review Committee Study
#JSR-09-330, San Diego, CA, 14-16 January 2009.
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The plastic-ablator Sl design is robust to hot electrons
up to 100 keV at 60% of laser energy during
the spike pulse
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Symmetric 2-D DRACO simulations performed with
similar targets indicate robustness to ice roughness

>3.5-4m rms
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Beam pointing schemes are being explored for
Polar Drive Shock Ignition on the NIF
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 Focusing separate shock beams at a smaller radius late in time
allows better coupling of energy to the target.

« A scheme with split quads would allow best irradiation uniformity on
target, but requires time-consuming “rewiring” of NIF seed pulses.

« Another scheme employing Fﬂcgfed aaf‘u —7 , Fﬂﬂ;jed HL Fshock
full quads, half for the main afads / e Anads
drive and half for the shock _ ' M Lower set of

pulse was recently proposed S [ -4 24NIF quads
by Steve Craxton |

*Craxton, et al., APS-DPP 2010



Current beam pointings uses ring 1 for the main drive,
ring 2 for the spike, and divides quads in rings 3 and 4

between the main drive and spike.
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Pointing Angles

An;fe’t( oy| Main | Spike
Ring 1 23.5 24.5
Ring 2 30.0 30.0
Ring 3 44.5 47.0 50.0
Ring 4 50.0 79.0 75.0

 Phase plates for rings 1, 2 and 3, are circular spots;
Ring 4 is a convolution of a circular and elliptical spot*

DRACO simulations are continually refining
these pointings to improve uniformity

*see T. J. B. Collins’ talk tomorrow



Preliminary DRACO Polar-Drive Shock-Ignition simulations
use six pulseshapes, three for compression and three for

the shock pulse
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Preliminary DRACO Polar-Drive Shock-lgnition simulations
indicate reasonable uniformity, but refinements are needed
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Laser imprint studies are also in progress




Summary/Conclusions

Plastic-ablator cryogenic shock-ignition designs for the NIF
are predicted to be robust at sub-MJ energies
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» Targets are tested for robustness using a 1-D, clean-volume model to
determine the minimum yield-over-clean (MYOC) required for ignition.

* Implosions at 600 to 700 kJ are predicted to be robust to
— Spike pulse mistiming of 700ps.
— Hot-electron energy deposition in the shell.
— lgnition threshold factor (ITF) for this target is 3.0.

« 2-D DRACO simulations indicate robustness to rms ice roughness up
to 3.5 um.

« Polar-Drive pointing schemes are currently being investigated in
DRACO
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