Shock Ignition with Plastic-Ablator Cryogenic Shells on the NIF

UR FSC Thick CH ablator 250 80 **DT** ice 200 DT 60 Power (TW) gas 150 Gain 40 100 20 50 0 0 📖 8 12 -400 400 0 0 4 Time (ns) Δt_{spike} (ps)

K. S. Anderson, *et al.* University of Rochester Laboratory for Laser Energetics Fusion Science Center for Extreme States of Matter and Fast Ignition

International Workshop on ICF Shock Ignition Rochester, NY 8—10 March 2011

Summary

Plastic-ablator cryogenic shock-ignition designs for the NIF are predicted to be robust at sub-MJ energies

- Targets are tested for robustness using a 1-D, clean-volume model to determine the minimum yield-over-clean (MYOC) required for ignition.
- Implosions at 600 to 700 kJ are predicted to be robust to
 - Spike pulse mistiming of 700ps.
 - Hot-electron energy deposition in the shell.
 - Ignition threshold factor (ITF) for this target is 3.0.
- 2-D DRACO simulations indicate robustness to rms ice roughness up to 3.5 $\mu m.$
- Polar-Drive pointing schemes are currently being investigated in DRACO

R. Betti[†], P. W. McKenty, T. J. B. Collins, R. S. Craxton, R. Nora[†], A. A. Solodov

University of Rochester Laboratory for Laser Energetics [†]also Fusion Science Center for Extreme States of Matter and Fast Ignition

L. J. Perkins

Lawrence Livermore National Laboratory

Large hard x-ray signals in OMEGA experiments may indicate preheat from LPI-generated hot electrons

A.V. Maximov et al., Bull. Am. Phys. Soc. 52, 195 (2007).

A thick plastic-ablator shock-ignition target for the NIF has been designed using existing NIF phase plates

IFAR_{2/3} =
$$\frac{R}{\Delta R}$$
 at $R = \frac{2}{3}R_0$

In one dimension, polar drive energy losses are approximated by using a fit to 3-D ray histogram of ray impact parameters

- Ray energy is binned using a 3-D raytrace in SAGE*
- NIF indirect-drive phase plates were used with defocusing
- Fit function is given by[†] $I(r) = I_0 e^{-(r/885)^{2.66}}$

*R. S. Craxton †G. Schurtz

The 1-D ignition-threshold factor (ITF) can be calculated from the minimum yield-over-clean (MYOC) required for ignition

 Varying the YOC¹as an input parameter, one finds the minimum YOC required for ignition

⁺YOC for non-igniting targets is controlled by modifying <σv>

UR

$$ITF(1-D) = \frac{1}{MYOC^{1.5}}$$

2-D DRACO simulations have validated this model for other designs*

*K. S. Anderson et al., Bull. Am. Phys. Soc. <u>54</u>, 306 (2009). P. Chang, K. Anderson, and R. Betti, Bull. Am. Phys. Soc. 54, 260 (2009).

FSC

Plastic-ablator shock-ignition targets are robust to shock timing and reduced clean volumes

The plastic-ablator SI design is robust to hot electrons up to 100 keV at 60% of laser energy during the spike pulse

- Straight-line hot-electron-transport model by A. A. Solodov
- Future work will investigate hotelectron transport during the main pulse

FSC

Symmetric 2-D DRACO simulations performed with similar targets indicate robustness to ice roughness $>3.5-\mu m rms$ UR FSC

- Symmetric laser irradiation
- DRACO simulations with . 3.5- μ m-rms roughness in modes $\ell = 2$ to 50
- Target ignites with full gain
- Upper limit on robustness to ice modes not yet explored
- Other nonuniformity studies ٠ to follow (imprint, target offset, polar drive, etc.)

LIF

Beam pointing schemes are being explored for Polar Drive Shock Ignition on the NIF

 Focusing separate shock beams at a smaller radius late in time allows better coupling of energy to the target.

- A scheme with split quads would allow best irradiation uniformity on target, but requires time-consuming "rewiring" of NIF seed pulses.
- Another scheme employing full quads, half for the main drive and half for the shock pulse was recently proposed* by Steve Craxton

FSC

Current beam pointings uses ring 1 for the main drive, ring 2 for the spike, and divides quads in rings 3 and 4 between the main drive and spike.

		Pointing Angles	
	Port	Main	Spike
	Angle (θ)		
Ring 1	23.5	24.5	
Ring 2	30.0	>	30.0
Ring 3	44.5	47.0	50.0
Ring 4	50.0	79.0	75.0

FSC

 Phase plates for rings 1, 2 and 3, are circular spots; Ring 4 is a convolution of a circular and elliptical spot*

DRACO simulations are continually refining these pointings to improve uniformity

Preliminary DRACO Polar-Drive Shock-Ignition simulations use six pulseshapes, three for compression and three for the shock pulse

Preliminary DRACO Polar-Drive Shock-Ignition simulations indicate reasonable uniformity, but refinements are needed

Summary/Conclusions

Plastic-ablator cryogenic shock-ignition designs for the NIF are predicted to be robust at sub-MJ energies

- Targets are tested for robustness using a 1-D, clean-volume model to determine the minimum yield-over-clean (MYOC) required for ignition.
- Implosions at 600 to 700 kJ are predicted to be robust to
 - Spike pulse mistiming of 700ps.
 - Hot-electron energy deposition in the shell.
 - Ignition threshold factor (ITF) for this target is 3.0.
- 2-D DRACO simulations indicate robustness to rms ice roughness up to 3.5 $\mu m.$
- Polar-Drive pointing schemes are currently being investigated in DRACO