

Perspectives for Shock Ignition experiments on LMJ

Guy Schurtz CELIA

 L. Hallo, M. Lafon, E. LeBel, M.Olazabal, X. Ribeyre, V. Tikhonchuk, S. Weber

CELIA, (CNRS-CEA-University of Bordeaux) (Fr)

- A. Casner, C. Rouyer (CEA-DAM)
- S. Atzeni, A. Schiavi, A. Marochini University of Rome *La Sapienza* (It.)

• D. Batani

University Milano La Bicocca (It.)

• O. Klimo, J. Limpuch

Cek Tech. University of Prague (Tcheck Republic)

• A.R. Bell, M. Tzoufras

University of Oxford (U.K.)

- PETAL+ to be commissionned end 2014
 8 beams of LMJ + 3.5kJ ps beams
- 2016 : 80 ns beams
- 2017 : 160 LMJ beams + 16 radiography beams
- Hiper cannot wait for completion of CEA defense programmes to enter the game
 - Need to use LMJ as it is : ID laser ports and focusing hardware
 - Use LMJ at low damage : E<600 KJ, P<300 TW

- 2005-2008
 - HiPER demonstrates single shot fast ignition using 150 kJ of ns pulse + 100 kJ opcpa
 - Stefano Atzeni's target : all DT, .59 mg driven at 135kJ, 40 TW
- 2008-2011
 - HiPER addresses IFE issues, including high rep, mass production + Injection and tracking
 - Down selection of solutions on the basis of
 - Detailed specs
 - Demonstration of ignition on existing facilities : NIF, LMJ
 - Shock Ignition becomes the main line
 - CEA supports HiPER « in kind » : 20% of LMJ shots
- May be envisonned using ID hardware

Implosion velocity for SI ranges in the 230-280 km/s interval

Efficient shock collision requires impedance matching

U=Vimp/Vign

Assume baseline design such as: scale h=1, Velocity V=1

Ignition parameter Θ =p.R constant on the curve h.V³=1 (for same impedance match)

YOC ~ $(R_{clean}/R_{1D})^3 \rightarrow \Theta_{rough} = \Theta_{1D}$ YOC ^{-1/3} : 50% YOC calls for h~1.26

Ignition occurs for P_{hs}R_{hs} > Q₀ : Trading Off Risks becomes easier at higher energy

Intensity in spike (10¹⁵ W/cm²)

Curves given for the all-DT 180 kJ target

Implosion velocity (km/s)

HiPER Target Design evolves towards more realism and enhanced robustness

	IFAR 75%r _o	Mass	Compression	Vimplo	η %	Spike	Gain
ALL DT S.A.	4.5 (t=0) 30 (75%r ₀)	.59 mg .29 fuel	180 kJ 50 TW 600 g/cc 1.5 g/cm ²	280 km/s	9%	<mark>160 TW</mark> 80 kJ	Y = 20 MJ G ~ 76
CH G.S./S.A.	3.4 (t=0) 18 (75% r ₀)	.67 mg .38 mg fuel	260 kJ 80 TW 720 g/cc 1.83 g/cm2	240 km/s	5%	200 TW 150 KJ	Y = 32 MJ G ~ 80

Upscaling HiPER at constant velocity : shock requirements

 $R \rightarrow R.s$, $t \rightarrow t.s$, $W \rightarrow Ws^2$, $E \rightarrow Es^3$, $M \rightarrow Ms^3$: SAME VELOCITY AND INTENSITY

Maximum Laser Intensity decreases with target scale

Gains > 100 may be obtained from safe SI targets on MJ class lasers

At reactor size, a shock allows control of the ignition time

A 3 MJ, G=200 CH/DT target self ignites at 240 km/s

Same target with a shock ignites 350 ps earlier

Spike Symmetry

According to 2D simulations, the Hiper target still ignites for non symmetric spikes

HIPER LMJ/160 beams irradiation

Optimize Polar Drive

- Repointing Beams
- Defocusing Beams

Splitting quads

- Tuning Power Balance : w_b
 - Intensity on target is linear function of w_b : $I(\theta, \varphi) = \sum_{i} A_{\theta \varphi b} w_b$

- Solve for W_b $I(\theta, \varphi) = \overline{I} \implies (A^{\dagger}.A)w_b = A^{\dagger}\overline{I}$

LMJ_8 cones irradiation (160 beams)

- 160 beams for compression + spike
- No azimutal depointing
- Beam balance can be time dependant
- Poor contribution of 33-b in foot, of 49a in main.

Power/beam for 100 TW on target	33-a 20 beams	33-b 20 beams	49-a 20 beams	49_b 20 beams	%rms
Θ, defocus	28°, -2	47°, -2	55°, -2	82°, -2	
R ₀	.61	.61	.61	.61	3.7
R ₀ + balance	.8	.25	.53	.9	1.14%
75% R ₀	.7	.63	.36	.8	0.78%

- 120 beams for compression + Spike
- 33-b for spike only
- Spike irradiation is 2-sided

Best NIF PDD patterns do not use ring_023/ring_30

Φ 2mm target	TW/beam 100 TW total	R-23	R_30	R45-a	R45-b	R50-a	R50-b	%rms
358.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	#beams	16	16	16	16	16	16	
192 beams	R ₀	0.52	0.52	0.52	0.52	0.52	0.52	7%
(LLE 2010)	R_0 + bal.	0.669	0.227	0.57	1.2	-0.16	0.62	1.03%
	75% R ₀	0.53	0.4	0.57	1.28	0.38	-0.46	1.17% (9.55)
33342 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0	0	16	16	16	16	
128/64 2	R ₀ + bal.	0	0	0.86	0.37	0.93	0.96	0.72% (5%)
	75% R ₀			0.71	0.78	0.85	0.78	0.67% (2.3%)
				16	0 8	16	16	
112/80 =	R ₀ + bal.	0	0	0.84	.96	.94	.86	0.75% (2%)
	75% R ₀			.67	1.9 5	0.85	0.62	0.72% (1.7%)

6 cones on LMJ . Energetics

This 3D result may be accounted for in 1D simulations:
compute the histogram of laser rays (cf S. Craxton)
differentiate and divide by r in order to get
equivalent focal spots for 1D simulations.
This can be done for each cone if a variable power
balance is used

In most cases shock will be driven from a 2sided polar illumination

NIF 128/64

17%rms

LMJ 160 3%rms

LMJ 120/40 + repointing 33a 15%rms

 $R_{ab} \sim R_{crit}/2$: Cloudy Day model predict reduction of mode I ~ 2^{-I} at ablation front CHIC 2D calculations predict ignition for non uniform spikes

Dynamic repointing seems achievable on LMJ

□ Moderate-Z ablators (SiO2, CHBr...) (Collaboration Univ. Madrid)

1D dynamics: Double ablation front structures

- Important role of the radiative flux
- > New theoretical 2T model / Realistic simulations
 - J. Sanz et al., Phys. Plasmas 2009
 - V. Drean et al., Phys. Plasmas 2010

Stability analysis :

with realistic modeling (Chic 2D) and simplified 2T model (Perle 1D + linear perturbations) \Rightarrow Growth rate reduction \Rightarrow N

• Other issues as LPI, RTI, discussed in further talks by S. Atzeni, O. Klimo, E. Le Bel

- Absorption efficiency
- How does RTI at stagnation interact with the shock ?
- What are the symmetry requirements for the spike ?
- Intensities in Spike are high : what about SRS, SBS, TPD ?
- electron transport in PDD shock ignition regime : probably non local, magnetized
- Validating PDD designs is first milestone

Hiper

SI Physics roadmap - Overview

Design Issues

Issues	Modelling	Expts
PHYSICS		
LPI at I > 5 10 ¹⁵	2D large scale PIC	PA
20,700	Reduced model in codes	PETAL- LI
e ⁻ transport	2D VFPL	
Ablative RTI	Imprint modelling	Double a
	Random material	
		ICE
Proof of Principle (Ω)	Integrated ϕ cs in hydro code	Down scale
Ignition Window		OMEGA
YOC > (TBD) %		Warm + c
PDD validation	Bfields + NL transport	60 beams

FITSICS			
LPI at I > 5 10 ¹⁵ 2w / 3w	2D large scale PIC	PALS/LULI/RAL/LIL	Wavelength, target design
	Reduced model in codes	PETAL- LMJ 16 b (2015)	
e ⁻ transport	2D VFPL		
Ablative RTI	Imprint modelling Random material	Double ablation expts at GEKKO ICE characterization	Bandwidth, gain material smoothing DT layering techniques Ablator
Proof of Principle (Ω)	Integrated ϕ cs in hydro code	Down scaled implos	Predictive design code
Ignition Window		OMEGA	
YOC > (TBD) %		Warm + cryo shots	
PDD validation	Bfields + NL transport	60 beams Vs 40+20 b	
Scale 1 Demo on LMJ		2016 : 80 beams	Down selection of SI
		2018 : 160+16 beams	as HiPER main line
Compression		PPD implos LMJ 80 b (2016)	PDD pattern, Dynamic pointing, smoothing
Shock timing and sym.		n imaging	Viability of 2 sided SI
Ignition metrics		Warm targets Crvo Shots	Decision for DT shots

- HiPER needs to demonstrate full scale ignition before decision to construction
- A 500 kJ , CH/DT target provides robust ignition with 100 TW for compression and 150-200 TW for the shock (scale 1.1)
- Scaling up the target at constant implosion velocity reduces both hydro and LPI risks.
- The trade-off between implosion velocity and maximum power may be different on NIF and LMJ.
- -A major milestone is proof of principle of high convergence PDD implosions. -Numerical restitution of NIF PDD PEX experiments would confort our design
- PDD solutions on LMJ and NIF are quite similar : 6 or 8 cones using the outer rings LLE and CELIA designs differ. Needs to be understood.

- Physics and robustness studies are ongoing within HiPER (see talks from S.Atzeni and O. Klimo)