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Summary

= The NIF is currently making unprecedented neutron time-of-flight

measurements of both DD and DT neutrons including:
— Unscattered Yield, Mean K.E., and variance, or “apparent ion temperature.”

= These measurements have generated a number of surprises in

layered implosions namely:
— TDD ~ TDT —0.75 keV,
— Ypp /Yp7 > expected equimolar reactivity

= Current systematic uncertainties don’t allow strong statistical
statements on important physics questions, thus...

= The Precision nToF project was created to better quantify the sources
of current systematic uncertainty and to point the way to improved
nToF precision.

= Since this scope is cuts across all ICF/HED facilities, it is a national
project with engagement from NIF, Omega, and Z.
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National ICF/HED Precision nToF Charter

= Determine requirements for next generation of neutron time-
of-flight diagnostics at HED facilities.

= Assess and down-select prospective technologies that address
these requirements

= Create a 3-5 year plan to develop and implement selected
technologies in facilities such as Omega, the NIF, and Z.

= The balance of this talk will focus on NIF nToF issues.
— For details on Omega see talk by J. Knauer a bit later
— For the Z facility B. Jones yesterday...
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Principal nToF systems under discussion today...
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NTOF Spec detectors all have fast scintillator with low afterglow,
low mass housing, and 4 light detectors

= Bibenzyl/Stilbene scintillator provides good signal strength with low afterglow
after peak for improved background in downscattered neutron region

= Low mass housing reduces local scattering further reducing scattering
background in down scattered neutron region

= Four light detectors provide flexibility to measure many different quantities on
a single shot (DD, DT, TT, RIF neutrons - customizable)
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Four tubes looking
at the same bibenzyl

NTOF Spec SP:
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Current NIF nToF systems report the 0" - 2"d moments
spanning a dynamic range of ~300.

Y, = 2.8 +0.04 x1015 Y, e = 1.02 £ 0.09 x1013
Vo= 39.3 £ 15 km/s Vgr = 40 £ 15 km/s
T, =4.43 +0.14 keV T, =4.04 +0.17 keV

ion

NIF shot N141106-002, detector SP4 NIF shot N141106-002, detector SP3

©  nToF scope data ©  South Pole nToF scope data
LA L L L L ) LB L B N 0_02“|“‘

the overall fit to the data

10 —— the overalll fit to the data

. DT t — ballabio spectrum only
------ primary neutrons

------ scatter spectrum only

—mee scatter contribution 0.015 —me background only

s . s
F N ] 5 0.01
c
2 L | )
o el ®
.......
T S 2 i

--------------------- UL 0.005

i

S0 o 30 3o a0 3% 400 76078 o8 08z 084 0B6 0ms 09 0%
Scope time (ns) Scope time (us)
DT and DD fusion neutron peak moments are
measured with % level accuracy.
Lawrence Livermore National Laboratory N A ﬁfﬁ% 6

LLNL-PRES-xxxxxx National Nuclear Security Administration



Ultimately precision nToF should measure the full
neutron spectrum in HED experiments...
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On recent layered implosions nToF measurements
show a ~0.75 keV difference in the apparent DD and DT
ion temperatures

High Foot Campaign
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Blind application of error propagation leads to poor
sensitivity to T,, via Murphy’s formalism..
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Further, detector systematic uncertainties
dominate LoS variability measurements
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One goal of the Precision nToF project is to
improve systematic uncertainties through:

New detector systems with improved
characteristics

Higher sensitivity digital recording
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Finally, pursuing higher moment analysis of the fusion
spectrum requires, precise knowledge of the system IRF

Reaction: DTN
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Current (Fall 2015)Precision nTof Performance

Goals

dCcuracy.

0.5%.

st 0.02%
2nd 100 eV
3rd 0.3%
4th 1%

Operate at fusion yields as high as 1 x 10%® to 1.2 x 10%° (33 kJ to 40 MJ).

Produce a linear output signal over this yield range to better than 1%
Measure the absolute neutron fluence at the detector to better than

Measure the first 4 central moments of the DT and DD neutron peaks to

the following accuracy:
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High Level Plan

= Define physics requirements for next generation of nToF
diagnostics at HED facilities. (c.f. previous talk by Spears)

= Assess current detector performance in context of new
requirements.

= Assess and down-select prospective technologies

= Create a 3-5 year plan to develop and implement selected
technologies in facilities such as Omega, the NIF, and Z.
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Status of 2"9 moment systematic uncertainty
understanding...
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Both detector IRF knowledge and effective bit depth are
major contributors to this budget
Precision nToF will initially focus on assessing these issues.
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The Precision nToF plan is managed through the
NIF Diagnhostics Engineering Team...
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With the following major technical elements...

Assessment of photo-detector impacts on system IRF
— Linearity
— Shift invariance

Scope strategies to mitigate a non shift invariant IRF.
— See A. Moore talk next

Study the practicability of in-situ IRF generation via 2-w fidu.

Assessment of detector backgrounds from scattered radiation in the

scintillator
— Determine the cross over point where optical filtering cannot accommodate
increased yields

Scope new photo-detector designs to produce a shift invariant IRF.

What follows is a snapshoft status report on the above plan.
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Impulse measurments show that the PD-040
appears to being saturating around 4 nC

PHOTEK - PD040 S/N (13450342, 13450325)
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Typical NIF shots result in ~2 nC being drawn from the tube
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Impulse measurements also show a 1t moment shift

show of ~15 ps/nC walk..

205.14

First Moment (nsec)
-
2

First Moments for ND 0.0 - ND 2.6

2 3
Charge Delivered (nC)

4

80 ps

60 ps

40 ps

20 ps

0 ps

Performance consistent with high resistivity cathode

At 18 m 80 ps
corresponds to
~12 km/s
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Behavior appears consistent with a simple capacitor
model of the detector

OUTPUT A D’ f
‘ - CONNECTOR Where: C,,=—¢, = -8.82
A 4A m

i — |

LIGHT ~—~— BERHH
L1 ‘.I|

[

A = photocathode area

_ L Cb §RL A = anode-cathode separation
A If a bias voltage V, is used, then
Cb: 300 pF
T RL: 50 2 (NONINDUCTIVE TYPE) the stored charge Qg = C 4V,
+HV

If charge Q. is extracted from the photo-cathode, the gap bias is reduced by
Q. / C 4 resulting in a subsequent transit time of:

Key assumption here is that the charge line storage is unavailable...
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This model provides estimates of IRF 15t and 2"
moment shifts due to extracted charge from a
Gaussian signal...

IRF Change vs Extracted Charge

1000.05—
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5 136.9 49.0 88.8 o
0.10 2 4 6 8
Extracted Charge (nC)
NB - Typical values for the FWHM of a system IRF ~1-2 ns.
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PD 040 15t moment shift from an impulse are
consistent with charge depletion of the PK gap

First Moments for ND 0.0 - ND 2.6

]
1 16.9 295.12 +» 80ps
2 37.2 _ |
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3 62.3 £ o
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5 136.9 & 20506 ® @ 20 ps
S e |
Detector model ‘95-0‘.' o ° 0 ps
o
Vacubam envelopd P v 7 comectortony 95.02, 1 2 3 4 5 B
__A_ and charge storage Charge Delivered (nC)

HV cable

Performance consistent with high resistivity cathode

Outer Body and current return

Ntype or SMA output connector to load
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As expected, the FWHM shift is small in comparison to
the system FWHM

Detector model

PK l\.
SHV HT conne

Vacuum envelope A and charge stc

HV cable

Ntype or SMA output connector to load
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The expected growth of a 490 ps standard deviation
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Gaussian after 5 nC of extracted charge is ~8 ps.
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Known limitations of currently used photo-
diodes...

= Signal path impedance (not 50 Ohms)
= Conductivity of window deposited photo-cathode

= Small well capacitance

. . (*'A‘l
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Prospective diode design by NSTec NVO (B. Davis)
mitigates the charge dependent IRF.

= Dual port design

= Conductive mesh underlayment between cathode and
window

= Ring capacitance for increased stored charge — (1000x
over PD040 design)

= 50 Ohm design to signal path

IRF Change vs Extracted Charge
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Digital recording ENoB plays a significant role in
moment analysis...

N141106 Ballabio N141106 Ballabio
10.000 = 10.000
- Data - Ei?ta
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e == = = = Scat-Amp 0.092 +/' 0.199 :: Scat-Amp 0.340 +/- 0.059
1 I
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A factor of 4 increase in ENoB reduces fits uncertainties by 3x
and dramatically improves the significance of the fit to the
scattered flux.
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This is also reflected in higher moment
sensitivity...

Signal (V)
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Increased ENoB also improves fit sensitivity to higher moments...
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Stitching higher sensitivity channels to recover ENoB
introduces systematic bias into DSR measurements

DSR = 3.5%

Single channel, S

unclipped
H '
i

Unclipped

PMT Signal (V/ns)
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Scope Time (ns)

Overdriven channel recovers slowly and gives a DSR that is higher by ~10%
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Summary

= The NIF is currently making unprecedented neutron time-of-flight

measurements of both DD and DT neutrons including:
— Unscattered Yield, Mean K.E., and variance, or “apparent ion temperature.”

= These measurements have generated a number of surprises in

layered implosions namely:
— TDD ~ TDT —0.75 keV,
— Ypp /Yp7 > expected equimolar reactivity

= Current systematic uncertainties don’t allow strong statistical
statements on important physics questions, thus...

= The Precision nToF project was created to better quantify the sources
of current systematic uncertainty and to point the way to improved
nToF precision.

= Since this scope is cuts across all ICF/HED facilities, it is a national
project with engagement from NIF, Omega, and Z.
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Current recording uses 4-5 bits, but new higher ENoB

digitizers are available

SPEC-A scope2
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New 10-bit Scopes/Digitizers are
being studied to provide an
improvement from 6 to 8 ENoBs

SPEC-A scope4
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which will significantly improve
Tion and DSR precision.
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Summary

= The Precision nToF project is focused on developing the
requirements and technologies to advance nToF capability for
future HED/ICF experiments.

= The Precision nToF Working Group is working to assess the
performance of currently deployed nToF technologies on the
physics goals of the future.

= Significant issues have been found with detector impulse
response functions and digital recording systems that impact
future precision capability

= Solutions too these issues are being explored through new
detector designs and new recording equipment.
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BACKUP
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The finite capacitor storage also limits

_Photek 040 Square-wave Response

10f Scale 1.0Q
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time (nsec)

Monitor data supports no change in excitation between these runs
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The NIF relies heavily on 40 mm Photek photo-
detectors locate 20 m from the source

Photomultipliers & Photodiodes

Features: Photomultipliers Yields < 1x101°

10 mm, 25 mm and 40 mm
Single, chevron or z-stack MCP options
with gain up to 3 x 10’
e UV, Solar Blind, Visible and NIR
responses
Rise time to 60 ps (model dependant)
FWHM to 100 ps (model dependant)
Single photon jitter to 28 ps
Multi-photon jitter below 10 ps
Fast pulse output linearup to 1 A
Fast gating to 2 ns
Integral 50 ohm output

Features: Photodiodes Yields = 1x101°

10 mm, 25 mm and 40 mm

Unity gain

UV, Solar Blind, Visible and NIR
responses

High dynamic range

Linear response measured up to TBD
amps per square centimetre

Rise time < 100 ps

Integral 50 ohm output
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3-D simulations™ of implosions produce neutrons from

ensembles of fluid velocities and ion temperatures
Keep an eye out for coming paper by D. Munro on

the details of this methodology.
burn T-u distribution (3D simulation)

chervnenene berererer b pravious descriptions of the neutron spectrum

4 —— o — based simply on T, and o, are incomplete.
% - - First and second moments of the birth
< - ‘ - spectrum only provide info on:
- - ( -
— Wdﬂl - 1. <w>
2__ LAl . 2 Tion
- - 3. 0,
- - Higher moments of the spectral peak (skew
- ~ and kurtosis, are required to provide info about
- | | | - T,,,~u correlations and T, , variance.
0 I TR T T L Y T Y A T O L Y
~500 0 u (kmi/s) 500

u = fluid velocity component a|ong LOS "Material provide by D. Munro and B. Spears

. . "‘ 1
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Example of a Main Title and Content [Calibri Font]
Use 24-pt “Regular” (no bold) subtitles to provide additional detail

= Laboratory budgets over the last 15 years
= How does this affect my program?
= What are the relative values of our investments? (Discussion)

= Three critical issues to be decided:
— Size of effort
— Organization and R2A2
— Funding mechanisms

= Wrap-up

Summary box has a full-width bleed.
Delete if not needed.
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Title-only layout. Font size can be reduced for
longer titles.

Summary box has a full-width bleed.

Delete if not needed.
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Title for Text and Tables

= Select table and then click on Design tab to change table colors
and attributes.

= All table fonts are Arial.

Heading 1 Heading 2 Heading 3 Heading 4

Body text item 1

Body text item 2 100 200 300
Body text item 3 100 200 300
Body text item 4 100 200 300
Body text item 5 100 200 300

Summary box has a full-width bleed.

Delete if not needed.
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Title for bulleted text with left column

= Begin list of bullets here

— Sub bullet
e Sub bullet
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Title for bulleted text with right column

= Begin list of bullets here

— Sub bullet
e Sub bullet
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Precision nToF must accurately measure the full
neutron spectrum in HED experiments...

10°
DD fusions Scattered DT n’s

10" / \ <« DT fusions
10
N RIF neutrons

D, T kinematic
scattering edges

—
o
&

'
A

'
w

Counts per 25 keV bin
) )

—a
ol

Ultimately requires a dynamic range ~106-8
Currently capability ~10*

—
o
~

—
o
&

I I |
5 10 15 20
Energy (MeV)

0 o 4l
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