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Numerical scrutiny verified the data interpretation of the
SNL iron opacity measurements

Solar models disagree with observations.
- Is iron opacity underestimated?

Fe opacity is measured at SNL Z-machine
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o Self-emission

o Tamping material
o Time- and space-integration effects

- Modeled opacity disagrees at solar interior conditions

" Data

Experiments and the data interpretation are scrutinized with simulations

Opacity

Sandia
National _
Laboratories

Opacity

= oniah

- At solar |nter|or T, and n,
Wavelength [A]

1*' i M\M

The effects are smaII

Wavelength [A]

One source of systematic uncertainty is always the data interpretation
Forward calculation helps investigate the validity of the data interpretation

J. E. Bailey et al, Nature 517, 56 (2015).




Simulated solar structure disagree with observations, ) e,
15% mean opacity increase is needed

Laboratories

Opacity: X,
e Quantifies radiation absorption
* K,(T, ng) ... input for solar models

e Opacity models have never been tested
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Simulated solar structure disagree with observations, ) e,
15% mean opacity increase is needed

Laboratories

Opacity: X,
e Quantifies radiation absorption
* K,(T, ng) ... input for solar models

e Opacity models have never been tested
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Simulated solar structure disagree with observations, ) e,
15% mean opacity increase is needed

Laboratories

Opacity: X,
e Quantifies radiation absorption
* K,(T, ng) ... input for solar models

e Opacity models have never been tested

Convection zone
base (CZB)
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Simulated solar structure disagree with observations, ) e,
o o o Laboratories
15% mean opacity increase is needed

Opacity: X,
e Quantifies radiation absorption
* K,(T, ng) ... input for solar models

CZB condition: e Opacity models have never been tested

T.=182 eV
n,=9x10%2 cm3
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o o o Laboratories
15% mean opacity increase is needed

Opacity: X,
e Quantifies radiation absorption
* K,(T, ng) ... input for solar models
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Simulated solar structure disagree with observations, ) e,
o o o Laboratories
15% mean opacity increase is needed

Opacity: X,
e Quantifies radiation absorption
* K,(T, ng) ... input for solar models

e Opacity models have never been tested

CZB condition:

T.=182 eV
—_ 22 -3 . . . .
n.=9x10° cm If opacity is wrong, Fe is a likely suspect:

« 2" ]argest contribution
* Most difficult to model

Let’s measure Fe opacity:

e (CZB conditions
e |:8-12A

Opacity contribution

0.00 1267 8101112131416 18202425 26 28

atomic number




Above 150 eV Fe opacities are measured using the Z-Pinch dynamic
hohlraum (ZPDH) opacity science platform

Z-pinch dynamic hohlraum
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Above 150 eV Fe opacities are measured using the Z-Pinch dynamic
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Above 150 eV Fe opacities are measured using the Z-Pinch dynamic
hohlraum (ZPDH) opacity science platform
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Above 150 eV Fe opacities are measured using the Z-Pinch dynamic ) i,
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Above 150 eV Fe opacities are measured using the Z-Pinch dynamic ) i,
hohlraum (ZPDH) opacity science platform
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Above 150 eV Fe opacities are measured using the Z-Pinch dynamic
hohlraum (ZPDH) opacity science platform
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ZPDH radiation
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* Transmission:

TV = Iv/ IV,O

* Opacity:
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* Plasma conditions:

Mg K-shell spectroscopy
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Iron opacity measurements indicate modeled iron opacity is
underestimated as approaching the CZB conditions
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* Solar-mixture mean opacity increase = 7%

* The discrepancy has an impact on:
* Astrophysics * High energy density physics
* Atomic physics

Need to make sure that the discrepancies are not caused by experimental flaws




Concern 1: Plasma self-emission =
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Concern 1: Plasma self-emission )
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Concern 2: Tamper transmission difference ) s

Tamper behind the
FeMg is not heated as

much FeMg—
A T,v IV/IV,O

b
:><
@
PN

* Assuming tamper transmission is
* Negligible, or

CH * The same on both sides
* What if tamper transmission is not
Heating radiation negligible and different with/without

FeMg?

Concern 3: Time- and space-integration effects

* The data are analyzed assuming static-uniform-plasma

 What if time- and space-integration effects are not negligible?




Systematic uncertainties associated with the concerns are
numerically investigated
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* Tamper effects

* Time- and space-integration effects
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* Concerns

1g0 A  Self-emission effects

* Tamper effects

* Time- and space-integration effects

Drive radiation: VISRAD

* 3D view factor code, VISRAD
* Gated pinhole images of ZPDH
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Drive radiation
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Systematic uncertainties associated with the concerns are

numerically investigated
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* Concerns
e Self-emission effects
* Tamper effects
* Time- and space-integration effects

Hydrodynamics: 1D Lagrangian, HELIOS

220
. 1801 ™
> =
&
= a0 -
100F . .
1E24F ' " 123
. = :
1E23 - | — i
m M 2€22
= : b, 0
S [Fiaons
<'1E22L -1 ns
E  Ons
1£21L . 2ns_ . A -
0 0.2 0.4 0.6 0.8 1.0

Axial distance from lower boundary [mm]




Systematic uncertainties associated with the concerns are
numerically investigated
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Systematic uncertainties associated with the concerns are
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Systematic uncertainties associated with the concerns are
numerically investigated
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* Concerns
1g0 A  Self-emission effects
* Tamper effects
* Time- and space-integration effects

Radiation Transport

intensity
intensity

Wavelength Wavelength

FeMg

intensity

Z-pinch dynamic hohlraum | WaVeIength




Simulated experiments reproduced the measured conditions
for eight iron opacity experiments
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Simulated experiments reproduced the measured
backlighter spectral image
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3  Measured image is the image averaged over 5
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Simulated experiments reproduced the measured
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value and in relative shape
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Simulated experiments reproduced the measured ) e,
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The simulated data are analyzed in the same way i) et
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Data are simulated for +£9°

Backlight radiation is shifted with
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spectra are extracted




The simulated data are analyzed in the same way i) et

X
]

X
|

simulated, -9°

simulated, +9°

Wavelength [A]

Laboratories

Data are simulated for +£9°

Backlight radiation is shifted with
respect to sample boundary

FeMg-attenuated and -unattenuated
spectra are extracted
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1. Compute transmission: T =l *9/I
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The simulated data are analyzed in the same way i) et
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The observed severe discrepancies are not explained by
self-emission, tamper effect, and integration effects
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Simulated data include:

* Time- and space-integration effects
 T,tz)andn,t,z)

e Tamping material: * Bv(t,'x,)'/) .
Tamper emission/absorption * Radiation transpor't through the gra!dlent
«  Tamper condition difference * Emergent spectra integrated over time

* FeMg emission




The observed severe discrepancies are not explained by
self-emission, tamper effect, and integration effects
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e Tamping material: * Bv(t,'x,)'/) .
Tamper emission/absorption * Radiation transpor't through the gra!dlent
«  Tamper condition difference * Emergent spectra integrated over time

*  FeMg emission



Numerical scrutiny verified the data interpretation of the
SNL iron opacity measurements

Solar models disagree with observations.
- Is iron opacity underestimated?

Fe opacity is measured at SNL Z-machine

- Data At lower T, and n,

_ Model ’&
3 Y
- T MW\N\,\!W;\.,JM l-'l \‘;l\'w\’/w " 'l

Opacity

Wavelength [A]

o Self-emission

o Tamping material
o Time- and space-integration effects

- Modeled opacity disagrees at solar interior conditions

" Data

Experiments and the data interpretation are scrutinized with simulations

Opacity

Sandia
National _
Laboratories

Opacity

= oniah

- At solar |nter|or T, and n,
Wavelength [A]

1*' i M\M

The effects are smaII

Wavelength [A]

One source of systematic uncertainty is always the data interpretation
Forward calculation helps investigate the validity of the data interpretation

J. E. Bailey et al, Nature 517, 56 (2015).




Concern 1: Self-emission is unimportant at A < 12.5 A ) Natoa

Laboratories
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« Self-emission is negligible for Thin CH due to its lower T,
« Accounting for self-emission would make the discrepancy worse




Concern 2: Tamper transmission difference effects are
important for Thick CH case
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- With tamper transmission diff. effects - Ideal

T,=167 eV, n,.=7e21 e/cc

Thin CH
1.0

20 um
(2}
X
El
<
M

© 0.0
Thick CH N | ‘
£ 10[ -
e ¢ T,=196 eV, n,=38e21 elcc -
g CH = o5l \. } 11, e
o A vl 1 l
~ I — > - Al \Y/‘," 'I M‘ I ~ w,
Ve 5 A Wiaiy y V'W -
T 0.0 | | |
CH+Be O 10

T,=182 eV, n,=31e21 el/cc

35 um

o

(€
\‘\‘\‘\‘\

10 11 12
Wavelength [A]

oo
(<)




Concern 3: Time- and space-integration effects on the
absorption features are negligible
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- With integration effects - PrismSPECT
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Investigated concerns do not explain the observed
discrepancies
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Self-emission effects, tamper effects, and time- and space-integration
effects do not explain the observed discrepancies




List of potential systematic errors i) Mo

Laboratories

= Raise measured opacity

Sample contamination = RBS measurements, Thin CH data
Tamper shadowing = CH+Be data, simulation

= Lower measured opacity = do not explain the observed descrepancies

Extraneous background = Beer’s law test

Tamper self-emission = Beer’s law test, comparison of Thick CH and CH+Be,
simulation

FeMg self-emission = -9° data, simulation

= Random over experiments =2 included in the reported uncertainties

Sample areal density errors 2 RBS measurements, Thin CH data
Transmission errors = Beer’s law test, Thin CH data

Spatial non-uniformities = Simulations, spectroscopic measurement
Temporal non-uniformities = Simulations, Thin CH data

Deviation from LTE - Simulations

Plasma diagnostics errors 2 Model uncertainty investigated, modeled opacity
disagree with the data at any conditions




