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The development of the Magnetized Liner Inertial 
Fusion (MagLIF) concept has motivated the 
development of new diagnostics.1 
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1M.R. Gomez et. al., Phys. Rev. Letters (2014) 
Graphic by C.A. Jennings 

Diagnose laser 
preheated 
fuel 

Imploding 
Be liner 

Gaseous 
D2 fuel 
60 psia 

Diagnose 
compressed,  
hot fuel 



E.C.	
  Harding	
   LANL	
  Diag.	
  Workshop	
  2015	
  

We use spherically bent crystal optics to image the             
x-ray, self-emission from our MagLIF targets. 
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We use spherically bent crystal optics to image the             
x-ray, self-emission from our MagLIF targets. 
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Diagnostic setup 

§  Advantages	
  of	
  crystal	
  imaging:	
  	
  
§  Image	
  energy	
  range	
  is	
  well-­‐defined	
  
§  High-­‐sensiIvity	
  rel.	
  to	
  pinholes	
  
§  Increased	
  detector	
  survivability	
  

§  Disadvantages	
  of	
  crystal	
  imaging:	
  
§  Field-­‐view	
  limited	
  by	
  crystal	
  size	
  
§  AsIgmaIsm	
  limits	
  the	
  spaIal	
  resoluIon	
  
§  Crystals	
  are	
  not	
  cheap	
  &	
  are	
  fragile	
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Our crystal imager was designed to selectively 
image the Ar K-shell line at 3.12 keV.  Images are 
time integrated. 
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Expected Ar emission spectra 
from preheated fuel 
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bandwidth 
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Detector: Fuji TR Image Plate 
Located 85 cm from crystal 



E.C.	
  Harding	
   LANL	
  Diag.	
  Workshop	
  2015	
  

Our crystal imager was designed to selectively 
image the Ar K-shell line at 3.12 keV.  Images are 
time integrated. 
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Expected Ar emission spectra 
from preheated fuel 
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The absolute sensitivity for each energy band was 
estimated by calculating the total instrument throughput 
using calculated crystal reflectivities.* 
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*The throughput estimates include filtering and the image plate response.   
 Reflectivity curves are calculated using the XOP software routines (M. Sanchez del Rio, SPIE 2011) 
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The spatial resolution is limited by astigmatic nature of 
the off-axis imaging.  The resolution was estimated 
using the SHADOW* ray tracing code. 
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Ray Tracing w/SHADOW 
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*M. Sanchez del Rio, SPIE 2011 

•  Continuum emission: resolution 
improves in both directions with a smaller 
crystal. 

•  Line emission:  Vertical resolution will 
primarily improve with a smaller crystal. 
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The continuum emission generated during the liner 
stagnation shows complex structure and non-uniformity 
in the vertical direction. 
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The average, radial width is around 100 µm, which 
is approaching the diagnostic limit of 60 µm. 

Z2613 
YDD=1x1012 

Z2707 
YDD=3x1011 

Z2708 
YDD=2x1011 

Z2769 
YDD=1x1011 

PSL 



E.C.	
  Harding	
   LANL	
  Diag.	
  Workshop	
  2015	
  

Simple SPECT3D* simulations indicate the stagnation 
images are primarily a superposition of 6.2 and 9.4 
keV emission. 
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SPECT3D setup 
Deuterium core 
100 µm dia.  
Te=Ti= 2.5 keV 
0.4 g/cc 

Be 
0.5 mm thick 
Te=Ti= 0.01 keV 
18.5 g/cc 

*SPECT3D is a collisional-radiative spectral analysis code 
produced by Prism Computational Sciences, Inc.  
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Simple SPECT3D* simulations indicate the stagnation 
images are primarily a superposition of 6.2 and 9.4 
keV emission. 
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Radial emission profiles from SPECT3D 
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Because the 6.2 keV contribution is 
significantly affected by the Be opacity the 
emission variations maybe stability related. *SPECT3D is a collisional-radiative spectral analysis code 

produced by Prism Computational Sciences, Inc.  
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Iron impurities occur in our Be targets as micron-sized 
particles that appear to be uniformly distributed. 
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The bright specks are Fe particles embedded in Be (Materion,S-65 grade).           
Fe impurity level is ~ 100 ppm as measured by Materion with ICPS. 

100 µm  
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To resolve the Fe emission generated at stagnation we use a 
spherically-bent crystal spectrometer. 
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1E.C.Harding et. al., RSI (2015) 
 D. Sinars et. al.  JSQRT (2006) 
 FSSR used on dynamic hohlraum capsule implosions 



E.C.	
  Harding	
   LANL	
  Diag.	
  Workshop	
  2015	
  

The existing XRS3 spectrometer was optimized for the 
detection of the weak He-like Fe emission, while 
maintaining high-spectral resolution. 
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Crystal Q20-23 (2d = 2.749 Å) 
Source-to-crystal 800 mm 
Crystal-to-detector 256.92 mm 
Crystal Radius 250 mm 
Center Bragg Angle 40° 
Crystal size1  60 x 36 mm 
Spectral Range2 6328 - 7977 eV 
Spatial Mag. (Msag) 0.30x 
Spectral Resolution3 2 eV 
Spatial Resolution3 210 µm 
Throughput 1.9e-7 steradians 

Spectrometer setup for He-like Fe emission  

1This is a tiled crystal consisting of 2 strips, each one is 60 x 18 mm 

2Detector length must be 85 mm to capture entire spectral range. 
3Limited by the Image Plate resolution of 63 microns. 

crystal 

Image 
Plate 
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We believe we are observing He-like Fe emission from 
stagnation.  The crystal image and spectra can be aligned 
using the spatial fiducials attached to the target. 
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The Fe He-like emission can be fit with synthetic            
spectra from PrismSPECT to estimate Te and ne. 
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Te = 1.6 keV, ne = 2e23 cm-3 
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Note: Prism calculations are 1D, 
nLTE, steady-state, and assume 
10% Be mix with .001% Fe.  
Optical depth of Fe w-line ~ 0.1 to 
0.2 ODs. 
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A time-gated detector is needed to further increase             
the accuracy with which we can interpret the image and 
spectral data. 
§  The	
  MagLIF	
  plaUorm	
  requires	
  only	
  modest	
  Ime	
  resoluIon	
  to	
  

have	
  an	
  impact	
  on	
  our	
  understanding.	
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Target timeline 
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2 4

(a) Time gating could be used to separate x-ray emission from these events. 
(b) 1 ns with 8 frames could coarsely resolve each event.  This will help 
constrain non-steady calculations. 

§  UlImately,	
  0.25	
  ns	
  resoluIon	
  is	
  required	
  to	
  fully	
  resolve	
  
stagnaIon.	
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Backups 
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The integrated line intensity ratio of the Fe resonance (w)  
to intercombination (y) line show sensitivity to fuel density. 
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The integrated line intensity ratio of the Fe resonance (w)  
to satellite line j (or k) show sensitivity to fuel Te. 
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Increasing density 
from 0.1 to 1 g/cc 
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The width of the Fe He-beta line shows some sensitivity  
to fuel density. With increases ~ 0.3 eV per 0.1 g/cc.  Doppler 
broadening will also increase the width. 

21	
  

Increasing Te from  
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