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SLOS imaging is key to national strategy and transforms
capability across ICF and the Science Campaigns
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Multi-frame hCMOS imagers have recently been
deployed for gated imaging on both Z and NIF

MaglIF laser preheat on Z* LEH imaging on NIF**
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*Porter (SNL) et al. **Chen (LLNL) et al.



Pulse-dilation SLOS with reflective x-ray optics solves
high spatial and temporal resolution image problem

KB Optics Pulse-dilation tube  hCMOS

Three orthogonal LOS can theoretically provide some 3-D information*

Multiple orthogonal lines of sight Reconsfructed 3-D
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*lzumi (LLNL) et al.




High energy, single line-of-sight gated cameras are
needed for face-on point-projection radiography on NIF
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Face-on Radiography

Face-on radiography

Detector Reguirements

2mm x 4mm FOV at target
<10 um/pixel at tcc

QE of 50% at 17-22 keV
2-4 frames

5-20 ns frame separation
22 ns gate time

Dynamic Range > 200



In the next 3 years, we will deploy a >1 MP hCMOS imager
with 1 ns gate times over 8+ frames
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UXI ROIC Architecture

Pixel Array
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UXI Camera Designs Existing or in Progress

‘High' Full Well Sensors ‘Low’ Full Well Sensors

Presently in Use Pulse Dilation

Year FY14 FY15 FY17 FYle FY18
Min. Gate ~1.5 ns ~2ns ~1.5ns ~1.5ns ~1ns
Frames 2 2 (full-chip), 4 or 8 (interlaced) 4 8

Tiling . TE
Option No No TBD No Linear Tiling
CMOS

Process 350 nm (SNL) 350 nm (SNL) 130 nm (IBM)
Pixels 448 x 1024 512 x 1024 512 x 512
Pixel Size 25 um x 25 um 25 um x 25 um
Capacitor - i - )

Full Well 1.5 million e 0.5 millione
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ACCA-The next generation burst mode hCMOS
imager under development at SNL

* Specifications
— 512 x 512 pixel array

— 8 frames per pixel

— 1 ns integration time
— 2 ns frame rate

ACCA ACCA ACCA
512 x 512 pixel array 512 x 512 pixel array 512 x 512 pixel array
8 frames/pixel 8 frames/pixel 8 frames/pixel
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— 25 um spatial resolution
— Left/Right abutable design

— 60 dB (1000:1) dynamic range’
* 500e- to 500k e-
— Reduced readout dead-time
* 1.45 ms per read-off of 512x512 pixels and 8 frames
— Improvement from 135 ms on 15t generation imagers
* 689, 8-frame movies per second in continuous read mode



The ACCA architecture enables a scalable number of
frames and form-factor

* Innovations

— Leveraging higher density 130 nm technology node
* Increased transistor density and metal interconnect layers enable significant design improvements

— Left/Right 2-side abutment form factor
* Infinite tiling in one direction
— Differential CML H-tree timing distribution
*  Expect improved timing distribution uniformity
. 2 global clocks distribute Pulse Width Modulation (PWM) encoded shutter information
— In-pixel digital shutter generator converts the global clock PWM information to individual
frame shutters
*  This architecture is scalable in number of frames while never requiring more than the 2 global clock
signals to be distributed

* Risks and mitigation strategy

— New technology (IBM 130nm CMOSS8RF process)
*  Process leakage is worse with IBM than SNL's 350 nm CMOS7 process that our current ROICs are
fabricated in
= Increased readout speed to minimize leakage effects (1.45 ms)
=  Cool the deviceto 0 C
*  Bulk technology susceptibility to radiation
= Test under radiation



GaAs diodes coupled to a Hippo-like ROIC with 50um pixels
could meet the needs for point-projection backlighting on NIF

ROIC (Hippogriff like)
50um pixels
* 512x512 pixels with 2 tiled sensors
2 frames or 4,8 frames interlaced
e ~2ns per frame
* Up to 6E6 e- per pixel per frame
(~1200 photons at 22 keV in GaAs)

Sensor 1

25.6 mm

Sensor 2

Detector

N e 50um thick GaAs

25.6 mm * Photo-absorption > 50% at < 24 keV
* < 1nsresponsetime

Primary Challenges

* Pixelated GaAs arrays have been built before, but maybe not at this thickness

* Defects in GaAs need to be studied to determine yield (density of good pixels)

* Handling of potentially large currents needs to be studied

* ROIC needs to be re-designed for larger pixels and for 1-side abuttment

* Speed of ROIC needs to be studied with larger pitch and higher capacitance per frame



Integration of pulse-dilation, hybrid CMOS and x-ray optics
staged over several years

« 16 frames in 400 ps — 2 ns
2 images from pinholes * 4 images from KB Optic

* 1 lcarus sensor « 2 lcarus sensors
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24 frames in 400 ps — 2 ns _
« 3 images from Wolter _

« 3 Acca sensors



SLOS 1 prototype instrument to be fielded with pinholes
SLOS 2 will be designed to match KB Optic image layout

SLOS 1

pinhole images
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SLOS 1 is required to fit in a standard DIM airbox including all
pulsers, electronics and energy storage for magnetic field

Decision driven by ease of fielding on the NIF

Imposes drift tube length constraint

g o
Needs radiation hardened # /
P external
/7' N

electronics for high yield .
operation connections

fast ramp

pulsers
storage
capacitor
camera
electronics soleniod

drift tube pulser



SLOS 1 performance parameters set by system contraints
(DIM airbox length, CMOS gate time) and physics

Pulse-dilation Triangle

T [ns] ramp duration

ramp duration = record length

drift time [ns]

assumes CMOS sensor 2 ns gate
& 2 ns interframe dark interval
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drift voltage [kV]

practical drift voltage range 2.5-0.5 kV

390 mm = maximum drift length we could squeeze into airbox with pulsers & camera



Photocathode ramp pulse shapes control the temporal
magnificatin and recording interval

Temporal mag. depends on drift time and PC ramp rate

As potential (drift time) drops ramp rate must decrease operating modes for
- single strip SLOS in DIM
2200 ’ A record gate
2000 Géu length width

1800 o temporal
2 1600 @ mag. 190 ps 19 ps
£ 1400 =2 —15X
2 1200 s —28X 265 ps 28 ps
£ 1000 S _48X
£ 800 & _:8;:)( 390 ps 42 ps
600 <
400 600 ps /1 ps
200 |
0 | ———— 1050 ps 133 ps

0 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15
time [ns]

assumes 2 ns back-end gate

PC voltage profiles needed to achieve uniform
temporal magnification of various magnitudes



Programmable photocathode pulser allows gate width/record
length to be changed on the fly

Fast ramp pulser is comprised of 8 avalanche step generators
which are added together to create main pulse

Each step generator can be independently timed via
programmable delays thereby controlling ramp shape

Trigger/control module

Avalanche module 1
Avalanche module 2
FET pulser and combiner module Solenoid
Cables to DIM package:
Power
FO coms
Fast trigger
PC monitor
Solencid | monitor
7,
-4
—

Solenoid HV warning
light (green)



Photoelectrons pass through a 4 potential regions which
accelerate, separate and then slam them into photodiode

electron-hole
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Icarus diode response to ~4keV electrons yields
approximately 1 “count” per incident electron
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QE of SEM Measurements
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for ~ 400 nm visible light
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by Q. Looker SNL
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photodiode electron responsitivity about right for SLOS

some fine tuning required depending on application



Statistics of Csl photoemission dictate weak dependence of
detection efficiency on photodiode responsivity to electrons

0 Gibrekhterman et. al., J. Appl. Phys. 74, 7506 (1993) .
10 e Csl cathode yields ~20 e / absorbed x-ray
diode QE mainly affects dynamic range
2 107!
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Pulsed magnetic produces uniform 6 kG field for 1:1
electron imaging resulting in 40 mm spatial resolution
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1 kd for magnetic field is stored in a 295 uF 2 kV
electrolytic capacitor located in the DIM

Coil wound onto vessel with a single winding

Turns doubled near the end for field shaping

8=\J(41,) +Opos =39 um @ 6 kG

328 x 656 pixels in 12.8 mm x 25.6 mm active area
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design precludes
“zooming” electron image
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Vacuum feedthrus for Icarus sensor and HV pulsers
challenging with space constraints in DIM

Icarus sensor must be locatd in vacuum

160 pins connect ROIC and camera board

0-ring seals

lcarus
sensor

connector

\

coaxial lines
for PC ramp

PCB “cable” :
o-ring seals

using coax & multilayer PCB as a vacuum barrier — proof tests planned



DC capacitor breaks isolate photocathode and anode cage

PC can be
replaced at
front of DIM

—ref. pulse
~thru DC break

fast pulse [V]

RF choke
DC bias

0 100 200 300 400 500 600 700
time [ps]

symmetric drive for
colliding pulses

19mm wide 25 Q PC
driven by 4 coax lines

DC break required for coax pin and shield
in order to float up anode cage for e- boost



Icarus sensor must be shielded from RF noise generated by
photocathode ramp at opposite end of drift tube

. —)n | [V
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/ Q&\pulsing kV across sensing mV on /

ustrip and cap breaks Icarus ROIC housing mounts to
copper clad PCB

Icarus sensor
Faraday cage

metal coated
plastic housing

grounded mesh
passes e” image



SLOS 1 scheduled to be taking data by end of FY16

FY16
Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept Oct | Nov | Dec
LOS 1 -- Pinhole array, 1 PC and ICARUS
RR CDR-- SLOS 1 system FDR-- SLOS 1 system 1Q/0Q
N\ I /\
Eval system ( Rev. ' ICARUS
SNL Sensor Dev Z/NFURI ICARUS AVAILABLE
GA dilation tube Detector system assembly and integration ™\
thanup Kenetech hardware
Order tube \ube avail Asmbly Complete w/o camera
/\ /\
as! bly&testing
/"\\CDR for SLOS 1 FDR for SLOS 1
Ship to GA
LLNL FPGA Dev and Camera system /\ Ver. 1 /\ Ver.2
Hardware for camera controller
Hardware design and development |
Camera board 1.0 /\FAB  /\Delivery /\OQ complete
Ship to GA
Camera board 2.0 FAB Testin (working ICARUS camera)
Software Development /\RR /\ Software ready to ship
/\ |Kentech- emulator
A Camera controls
Order Kentech Emulator ATP Complete and ship to LLNL
Integration & testing in airljox ‘

Comet

\fA rcv camera

Ready for installation in NIF

Calibration

1Q/0Q

NIF integration

Fawa




