The Optical Thomson Scattering Diagnostic

National ICF Diagnostic Working Group Meeting

P. Datte, LLNL

LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The Optical Thomson Scattering (OTS) Team

P. Datte¹, J. S. Ross¹, D. Froula², J. Galbraith¹, S. Glenzer⁵, C. Goyon¹, B. Hatch¹, J. Kilkenny¹, O. Landen¹, A. Manuel¹, W. Molander¹, D. Montgomery³, J. Nelson¹, G. Swadling¹, J. Weaver⁴, G. Vergel de Dios¹, M. Vitalich¹, J. Moody¹

¹Lawrence Livermore National Laboratory, Livermore, California, USA, ²Laboratory for Laser Energetics, Rochester, New York, USA, ³Los Alamos National Laboratory, Los Alamos, New Mexico, USA, ⁴Plasma Physics Division, Naval Research Laboratory, Washington DC, USA, ⁵SLAC National Accelerator Laboratory, Menlo Park, California, USA

A phased approach to Optical Thomson Scattering (OTS) will mitigate the risk presented by background levels

- Phase I
 - Assess background levels around potential probe wavelengths
 - Design and field an optical collection system
 - Supporting Electron Feature not to preclude Ion Feature
 - Alignment to 250 microns for different target types
 - Utilize existing NIF beams for the probe on "simple" experiments (Quartraums, Collisionless Shocks, etc.)
- Phase II
 - Using the background measurements from Phase I validate the probe beam requirements
 - Design and field a Thomson scattering system with a dedicated probe beam to allow measurements on all platforms

Based on the recommendations of the two diagnostic workshops we have developed a phased approach.

OTS DIM based diagnostic assembly

 Optical Thomson Diagnostic is a DIM based diagnostic platform designed to operate in the polar and equatorial locations. Simultaneously records both the electron plasma wave (EPW) and the ion acoustical wave (IAW).

OTS diagnostic DIM platform, telescope, spectrometers, optical streak camera

OTS optical layout diagram describing optical components of the DIM collection system

OTS airbox assembly is the first of three key modules in the detector assembly

The airbox is assembled off line prior to installation in the final assembly

OTS airbox configuration describing the complete streak camera assembly

ence Livermore National Laboratory

RES-YYYYYY

- Optical streak camera configuration
 - 21 mm spatial region for IAW & EWP spectrum
 - Resolution element ~100 um/pixel
 - FIDU and Comb imprinted on data image
 - Gated cathode operation
 - 4 selectable sweep speeds (5,10,15,35) ns
 - CaF₂ cathode window
 - N₂ beam path from window to optical path

Clear aperture for streak tube window relative to the comb and FIDU injection

OTS spectrometer assembly is the second of three modules in the detector assembly

The spectrometer is assembled as an individual module, and characterized prior to assembly into the final DIM assembly.

OTS spectrometer group summary

Spectrometer group features

- EPW & IAW spectrometers (Czerny-Turner type), adjustable gratings
- 135 um entrance hole (shared by both spectrometers)
- Two diodes (entrance and exit) for transmission reference
- Automated IRIS for each leg (filters)
- λ_0 line masking for IAW
- Alignment camera at pin hole
- ATLAS alignment SMRs

OTS spectrometer group summary

- Spectrometer Operational Specifications
 - Spectrometers
 - IAW: 206-214 (nm)
 - EPW: 150-200 (nm)
- Measurement Bandwidth:
 - IAW- 4 nm, EPW- 50 nm
- Resolution (δλ/λ):
 - IAW-0.0001, EPW-0.01
- Time resolution: 200 ps
- Time delay between IAW and EPW: 4.9

Spectrometer ray trace diagram for the EPW and IAW optical paths to photocathode

From Telescope

Spectrometer	Ray Color	Wavelength
EPW	Blue	150nm
EPW	Green	175nm
EPW	Red	200nm
IAW	Teal	208nm
IAW	Yellow	210mn
IAW	Pink	212nm

IAW performance – point spread function at the photocathode

- IAW (~0.6 meter), 2400 l/mm (2nd order)
- Point source at center of pinhole, two wavelengths 210nm and 210.021 nm
- Reciprocal linear dispersion at photocathode = 0.2293nm/mm

Lawrence Livermore National Laboratory

EPW performance – point spread function at the photocathode

- EPW (~0.14 meter), 1200 l/mm (1st order)
- Point source at pinhole with two wavelengths 175 nm and 175.5 nm
- Reciprocal linear dispersion at photocathode = 4.437nm/mm

Horizontal lineout averaged vertically

OTS telescope assembly is the third of three key modules in the detector assembly

OTS telescope assembly is assembled and aligned offline prior to being installed in the final DIM assembly.

Lawrence Livermore National Laboratory

OTS telescope assembly

- Telescope assembly
 - MgF2 blast shield
 - Off-axis Schwarzchild telescope (f/8.3)
 - FOV at TCC: (+/-) 3 mm, (+/-) 8 mm 50% vignetting
 - Magnification: 2.7
 - Illumination laser diodes (660nm)
 - Band-pass filters
 - Off-axis parabola
 - ATLAS alignment SMRs

OTS telescope assembly debris wind analysis shows a factor of 6 safety margin for NIF

- Simulation covers a front window and telescope face plate. Pressure time history is analyzed.
- Analysis shows peak stress in the Aluminum housing is 35MPa, yielding a 6X safety factor
- The blast window stresses are approximately 21MPa
- Evaluation of the MgF2 material is in process, preliminary data show 8mm thickness will provide adequate safety margin.

OTS diagnostic external alignment tool (ATLAS) will position OTS in the NIF chamber

- ATLAS external alignment interfaces
 - ATLAS alignment can view equator and polar locations
 - ATLAS SMRs are placed for two different location.
 - ATLAS placement of DIM is (< 200 um). System is being commissioned and will have better numbers is a few months.

ATLAS view of DIM based diagnostics

OTS diagnostic telescope incorporates an internal alignment camera as one of two alignment aids for OTS

OTS telescope field of view at the pin hole based on a magnification of x2.7. The FOV at TCC is +/- 3 mm at TCC and +/- 8 mm at TCC with 50% vignetting.

Image plane at spectrometer pin hole that is viewed by internal alignment sensor for final target alignment.

Telescope FOV at the IP2/pin hole. Pin hole is 0.135 mm, 50um at TCC

Hohlraum target at TCC imaged at IP2 pin hole after x2.7 magnification, equatorial view

Hohlraum at TCC viewed by the OTS alignment camera, equatorial view

Alignment CCD sensor active area

Target overlay on CCD sensor, equatorial view

Alignment sensor-Sony (ICX285AL) 6.45um pixel pitch, 1:1 image relay, corresponding to ~21 pixels across the pin hole. This provides 2.5 mm vertical coverage at TCC.

Hohlraum at TCC viewed by the OTS alignment camera, polar view

Target overlay at pin hole after x2.7 magnification, polar view

Hohlraum target at TCC imaged at IP2 pin hole after x2.7 magnification, polar view

Alignment sensor specification for the OTS alignment camera, including illumination response

SONY

Diagonal 11 mm (Type 2/3) Progressive Sca Sensor with Square Pixel for B/W Cameras

Quantum Efficiency

50

30 20

320

Description

The ICX285AL is a diagonal 11 mm (Type 2/3) interline CCD solid-state image sensor with a square pixel array. High sensitivity and low smear are achieved through the adoption of EXview HAD CCD technology. Progressive scan allows all pixel's signals to be output independently within approximately 1/15 second. Also, the adoption of high frame rate readout mode supports 60 frames per second. This chip features an electronic shutter with variable charge-storage time which makes it possible to realize full-frame still images without a mechanical shutter. This chip is suitable for image input applications such as still cameras which require high resolution, etc.

CX285AL		Sensor		
In CCD Image	Sensor	Sony ICX285		
pin DIP (Ceramic)	Туре	Inter Line Transfer (ILT)		
	Resolution	1392(H) x 1040(V) Color & Mono		
There are a second secon	Pixel Pitch	6.45 μm x 6.45 μm		
Allhi.	Active Area	8.98. mm x 6.70. mm - 11.2 mm diagonal		
	Max Datarate	28 MHz		
Sony ICX285 CCD Se	ensor			
/		660 nm Illumination		
		source wavelength		

250 250 250 250 250 250 250 250 250 250	7240 7780 8200 8200 840 860 9200 9200 940	960 1020 1020		
Wavelength (nn	n)			

Alignment sensor-Sony (ICX285AL) 6.45um pixel pitch, and provide 2.5 mm vertical coverage at TCC.

Remaining physics and engineering issues for OTS

- Blanking studies for debris window
- Improved mechanical stress models for window material
- Coating damage studies
- Completing the gated circuit prototype
- Background estimate model improvement

OTS high level schedule for remaining phase 1 and the addition of phase 2

Backup Slides

OTS unfolded optical layout describing the optical components in the measurement system

- Labeled f/#s are from using D1=154.3mm (beam diameter at primary)
- The IAW magnification is optimized for the resolution element of recording systems.

OTS unfolded layout describes the optical components in the measurement system.

OTS spectrometer group assembly for the IAW and EPW

OTS spectrometer group optical path diagram, (top view)

IN

OTS diagnostic photodiode (SiC), light collection transmission monitor

ELECTRO-OPTICAL CHARACTERISTICS AT 25°C								
	PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNITS		
	Active Area	1mm x 1mm		1		mm ²		
	Responsivity, R	(see graphs on next page)				A/W		
	Reverse Breakdown Voltage, V _R	I _R = 1μA	55			Volts		
	Capacitance, C	$V_{R} = 0V$			40	pF		
	Rise Time	$RL = 50\Omega$, $V_R = 52V$			700	psec		
	Dark Current	V _R = 52V	0		1	nA		

- SiC photodiode is used as a transmission monitor for the diagnostic.
- Diode locations
 - Pin hole
 - IAW-G1, "0 order" reflection

Typical Holhraum target

THD_Au_575.1013_337_HDC5.9_C_14-104187

Target Dimensions Length: 10.3 mm Width: TBD

OTS controls point diagram that describes the DIM based automation

Optical Thomson Diagnostic is a DIM based diagnostic platform designed to operate in the polar and equatorial locations. All the controls will operate at both locations.

OTS wavelength diagram describing the optical band-pass for telescope and spectrometers

OTS wavelength diagram describes the band-pass of the optical collection systems.

