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Overview 
Background noise assessment: 

§  Quantify plasma emission: 
—  Bremsstrahlung self-emission 
—  Thomson scattering of the 3ω drive beams 

§  Quantify optical collection of self emission: 
—  How much of the emitted radiation is 

transported to the spectrometer 

“Blanking” assessment: 

§  X-ray flux can cause the blast-window to become 
opaque or “Blank” 

§  Need to quantify blanking: 
—  how much radiation is seen? 
—  how much flux can window tolerate? 
—  Can we shield? 

Laser-Backlit Fused 
Silica Bar 

“Blanking” Wave 

Laser driven x-ray 
source 
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Background Assessment – 
Mathematical Framework 

§  Plasma is characterized by Spectral Intensity Ie,Ω,λ. .This 
is defined in terms of the radiant flux density Φe. 

—  Power per unit volume (V), solid angle (Ω) and 
wavelength (λ) 

§  Optical emission from the plasma can be estimated based 
on bremsstrahlung: 

§  We also need to assess the contributions from the 
Thomson scattered drive beams – more complicated! 
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Inverse Bremsstrahlung 
Maps of plasma conditions obtained from simulation of a standard 4-shock hohlraum : 
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Inverse bremsstrahlung 
The bremsstrahlung emission map can then be calculated (log plot!): 

linear log 
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Thomson scattering of drive beams 
§  The calculation is simplest for collection 

along the hohlraum axis 

§  Each Quad is treated as a single 
scattering geometry 

§  the problem reduces to 4 scattering 
geometries 

§  Thomson scattering power is calculated 
using following equations: 

§  Other collection geometries could be 
harder to model but not intractable. 
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We can calculate: 
•  Thomson Spectral intensity due to the probe beam: IS,Ω,λ 
•  Thomson Spectral intensity due to the drive beams: ID,Ω,λ 
•  Background Bremsstrahlung emission: IB,Ω,λ 

 But what does the spectrometer see? 
log 
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Optical collection: 
•  Only small fraction of emitted or scattered radiation is collected by the lens 

•  Much of this is discarded by the spectrometer aperture 

•  These spatial variations in collection efficiency can be quantified  

Collection 
lens 

Spectrometer 
aperture 
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Optical collection (simplified…): 
•  Simplification – for lens  aperture >> pinhole 

•  The collection is treated by limiting range of integrals of Ie,Ω,λ over dV and dΩ 

•  Lens + pinhole aperture will only collects light from the volume within the F-
cone 

r 
z R

•  The radius of the collection cone 
is: 

•  Used to limit the volume of 
emission integration 

! = !
2!!

!

pinhole 
aperture plasma 

lens 
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Optical collection (simplified…): 
•  Within collection cone, the pinhole limits the solid angle of 

emission collected 

•  Project Virtual Aperture – the aperture imaged into the plasma: 

virtual aperture area Af  

source volume dV  
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accepted solid angle 
cone ΩA  
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Final calculations for background 
§  These limits are used to calculate the power delivered through the aperture: 

§  Integrate 3D emission map over collection to find the power, Pλ 

 

§  Assumption: Plasma emission is function of z only: 

—  This assumption is pretty reasonable given that the collection system is f/8. 
Collection is thus only along a relatively narrow column 

§  Assumption: Plasma emission is uniform from plasma of length L: 
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Inverse bremsstrahlung 
The F-cone is very narrow inside the Hohlraum – can be reasonably treated as 
1D: 

f/8 Collection  
Cone 
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More detailed calculations… 

•  Edge effects occur over the scale-size of the aperture. 

•  These have no effect on the “total collection” 

F-cone with  
“edge effect”  

Virtual  
aperture  
position  

Virtual aperture point-projected onto the lens and overlap calculated 
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Self Emission calculation results  
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Data - Background 

•  Self-emission background calculated from emission map shown earlier 
•  Signal to background of 0.8 is expected for a 10 J probe 
•  Ion feature is resolvable – especially if background is known 
•  Electron feature measurement is extremely challenging due to shape sensitivity 

Measurement 
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Thomson Scattering of Drive 
calculation results  

•  Nominal 10 J Probe 
 
•  Ion feature should be easily 

analyzable 

•  3ω scattering can be 
subtracted either through 
background shot or 
constrained calculation 

•  Background on the blue-
side of the electron feature 
should be reasonably small 

•  Effect looks much smaller 
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0

0.005

0.01

0.015

0.02

0.025

Does not 
include self 
emission 



LLNL-PRES-XXXXXX 
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC 

X-ray Induced Blanking 
Assessment	
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Blanking Assessment: The Problem 

§ Optically transparent materials become 
opaque when subjected to sufficient radiation 

 

§ The limits of acceptable radiation dose are 
poorly understood 

§ We need to know: 

—  Dose limit for glass before “blanking” 
—  Expected X-ray dose 

§ Experimental verification that OTS will not 
blank before measurement is essential 

Blast 
shield 

X-ray 
Flux 

60 cm
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Previous Blanking Measurement 

§ Measurements of fused silica 
transmission under x-ray exposure 
at OMEGA 

§ X-rays produced by laser heating a 
gold sphere 

§ Results show ~ 80% transmission at 
~ 0.3 Jcm-2 x-ray fluence 

London et. al. Rev. Sci. Instrum. 79, 10F549 
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Scaling to the NIF 
§ Estimate based on a nominal 
hohlraum shot 

§ Worst Case Scenario 

§ Calculated from X-ray flux 
measured by Dante 

§ Dose limit for “blanking” (0.3 
J cm-2) reached at 2 ns from 
drive-start 

§ Experiment wont work like 
this… 

blank 
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Reduce flux by 10… 

§ Extends blanking 
time to start of 
main pulse 

§ Not good 
enough…. 

blank 
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Reduce flux by 100! 

§ Window 
doesn’t blank! 

§ Not clear this is 
possible… 

No blank! 
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Reducing the Dose – Line of Sight 

•  DANTE sees the hohlraum wall 

•  The blast shield will not 

•  Need to quantify how much this will help 

DANTE 
view 

Blast 
shield 
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Reducing the Dose – Solid Shielding 

•  Shielding is difficult 

•  In order to shield without 
reducing the collection 
cone shield must be very 
close to target 

•  Drive beams will get in the 
way 

Blast 
shield 

NOT TO 
SCALE 

Drive  
beams 
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§ X-ray Gas shield 
injected before shot 

§ Attenuates X-rays but 
not dense enough to 
block optical 
propagation 

§ Rely on supersonic gas 
expansion time to 
protect hohlraum from 
gas 

Reducing the Dose – Gas Shield 

Gas  
injectors 

Supersonic Gas Shield 
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Reducing the Dose – Change 
Configuration 

•  Alternatively can move to a equatorial measurement 
 
•  Reduced x-ray flux due to smaller diagnostic hole 
 
•  No Gold wall view 

•  Not our ideal choice – surrogacy issues, hole closure etc. 

•  Again, need to quantify difference in Flux 

Blast 
shield 
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Experimental Planning 

§ Need to understand blanking 
effects in a variety of materials 

— MgF 
— CaF 
— LiF 
— AlO 

§ Ideally: 
— OMEGA  

–  test materials positively 
measure blanking 

— 1-2 NIF shots 
–  Cross Calibration 

Streak camera 

Sample Pack 
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NIF Shot Concept 

§ Use Polar DIM 

§ Place glass samples over a 
range of distances from 
the Hohlraum 

§ Distances control the X-ray 
Fluence seen by each 
glass sample 

§ Record Hohlraum self 
emission on Streak 
Camera 

§ Should observe glass 
blanking in sequence 

Streak camera 

Sample Pack 
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Summary 

§ Two Background effects: 
— Self Emission 
— Drive Thomson Scattering 

§ We know how to assess these – initial results suggest 
this problem is manageable 

§ Blanking is caused by x-ray irradiation of the blast shield 

§ This problem looks more challenging 

§ We need more data: 
— Blanking limits for different glasses 
— X-ray flux measurements along relevant lines of sight 


