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AN NI1D has been conceptually designed to
measure DD or DT burn histories with a time-
resolution of <30 ps at the NIF

* The front end of the NTD consists of a 100 micron thick, 5 mm diameter scintillator
positioned 18 mm (DD) and 100 mm (DT) away from TCC.

* The NTD will compliment the existing GRH and future MRSt for measurement of DT-burn
histories. It will also measure DD-burn histories.

* MCNPX was used to assess signal to background from NIF implosions

* For DD, on the basis of NVH implosion data and estimates of ambient backgrounds
levels, burns widths and bang times can be determined with an accuracy of 45 ps and 30
ps respectively for yields greater than 5x101°

* The NTD can also be used to measure burn widths and bang times of DT implosions with
an accuracy of 45 ps and 30 ps for yields greater than 1013
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I Ne SCINtIator-pased N i W COMNnGePpPt was
defined and implemented on NOVA in the 90s
by Lerche et al.
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Around 2000 a similar system was Retrieved from R. A. Lerche et al. RSl 66, 933 (1995)

implemented on OMEGA by Stoeckl et al.

2015-10-06 Brandon Lahmann 4



1he time-resolution requirement or 30 ps sets
strict restrictions on the NTD scintillator
geometry and position

* Time dispersion creates an uncertainty that scales with 74707 and stand-off
distance ¢ Istandoff

* Max Istandoff ~ 2 cm for 4keV DDn ' e
* Max lstandoff ~ 12 cm for 4keV DTn A”d”pe’””o’zc Tlion (tlstandoff /
neutron )

* The detector thickness witAick creates an uncertainty in neutron-interaction
time
* Max withick ~ 650 microns for DDn

« Max withick ~ 1500 microns for DTn Atithickness < (withick /VElneutron )

* Detector diameter can contributes to the uncertainty in the interaction time if it’s

comparable to the standoff distance
e Max Z~ 0.8 cm for DDn Atldiameter < (d/fIstandoff )(d/\/
' £l
* Max @~ 2.8 cm for DTn neutron. )
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Considering minimum stand-off distance and shielding space
constraints, an optimal NTD design that meets the requirements for DD
can easlly_ he found
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Considering minimum stand-off distance and shielding space
constraints, an optimal NTD design that meets the requirements for DD
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Considering minimum stand-off distance and shielding space
constraints, an optimal NTD design that meets the requirements for DD
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A similar procedure can be applied to find an
optimal NTD design for DT neutrons

At <30 ps
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MCNPX was used to model the energy deposited
in the scintillator by signal neutrons and direct
x-ray background

BC-422 Scintillator

Cross Sectional View

Plexi Glass ———]

Tungsten Shield
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e A4 keV DDn or DT neutron
spectrum were used as input

 X-ray backgrounds determined
from FFLEX and SPBT detectors

for ‘representative’ NIF shots
were also used as input
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FrFLEA dilnd 9F D 1 ddid TToim N19VUJI£VU Were
used to simulate ‘typical’ x-ray background in
NVH experiments

1 FFLEX Spectrum SPBT Signal
10 5 T T T — T T T T
1010
5 2
> - —
% 10° 5 i
> >
(0] [
3 ©
> -
100 _é -
g <
£
10-5 k/\\\ |
-10 1 1 | 1 1 1 1 1 1 . L
10 0 100 200 300 400 500 600 700 800 900 1000 -5 0 5 10 15 20
Energy (keV) Time (ns)

2015-10-06 Brandon Lahmann 12



SNIelaing IS reguired to suiricienuy reauce
the x-ray background below the neutron
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I Ne energy aeposited Iin tne scinuliator Dy
5x101° DDn dominates the energy deposited

NTD Dimensions

Thickness - 100 um
TCC Distance - 18 mm
Diameter - 5 mm
W Shielding - 3 mm
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Considering the scintillator properties, signal chain inefficiencies, and

ambient background on the CCD, synth

Assumed IRF

Rise Time = 25 ps
Fall Time = 1600 ps
Efficiency = 8400 photons /
MeV

Signal Chain Inefficiencies

Collection Efficiency = 1.5 %
Surface Light Loss = 50 %
1:1 Signal Imaging = 5%
Photo Cathode Q.E. = 6%
Counts / Photoelectron = 3%
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Considering the scintillator properties, signal chain inefficiencies, and

ambient background on the CCD, synth
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Dding TIMme ainad DUIn widtn Gai DE acurately
determined from the signal in this low yield
ennnario

Forward Fit To Signal

Deconvolution
Parameter Modeled Value
Value

Bang Time (ps) 8000

Burnwidth (ps)

CCD Counts / Time Bin
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Same NTD design can easily be extended to

DTn using a different standoff distance

NTD Dimensions

Thickness - 100 um
TCC Distance - 100 mm
Diameter - 5 mm
W Shielding - 3 mm
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Same NTD design can easily be extended to
DTn usmg a different standoff distance

Assumed IRF

Rise Time = 25 ps
Fall Time = 1600 ps
Efficiency = 8400 photons /
MeV

Signal Chain Inefficiencies

Collection Efficiency = 1.5 %
Surface Light Loss = 50 %
1:1 Signal Imaging = 5%
Photo Cathode Q.E. = 6%
Counts / Photoelectron = 0.5%

Average CCD Counts per Pixel

S/B~ 1.5
S/N~4

|
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Dding TIMme ainad DUIn widtn Gai DE acurately
determined from the signal in this low yield
ennnario

Forward F|t To Signal

Deconvolution
Parameter Modeled Value
Value

Bang Time (ps)

CCD Counts / Pixel

Burnwidth (ps)
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Future Work

* The NTD system will have it’s viability confirmed for PDD and GFH
type implosion

* Uncertainties in the IRF’s effect on inferred values will be explored
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AN NI1D has been conceptually designed to
measure DD or DT burn histories with a time-
resolution of >30 ps at the NIF

* The front end of the NTD consists of a 100 micron thick, 5 mm diameter scintillator
positioned 18 mm (DD) and 100 mm (DT) away from TCC.

* The NTD will compliment the existing GRH and future MRSt for measurement of DT-burn
histories. It will also measure DD-burn histories.

* MCNPX was used to assess signal to background from NIF implosions

* For DD, on the basis of NVH implosion data and estimates of ambient backgrounds
levels, both burns widths and bang times can be determined with an accuracy of 30 ps
for yields greater than 1010

* The NTD can also be used to measure both burn widths and bang times of DT implosions
with an accuracy of 30 ps for yields greater than 1012
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Extra Slides



5x101° DTn response for an CCD located outside the

Assumed IRF

Rise Time = 25 ps
Fall Time = 1600 ps
Efficiency = 8400 photons /
MeV

Signal Chain Inefficiencies

Collection Efficiency = 1.5 %
Surface Light Loss = 50 %
1:1 Signal Imaging = 5%
Photo Cathode Q.E. = 6%
Counts / Photoelectron = 3%
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1013 DTn response for an CCD located

outside the target bay

2
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