

Yongho Kim, Hans Herrmann, Carl Young, Justin Jorgenson, Frank Lopez, David Barlow, Michelle Espy, Mandie Gehring (LANL) Terry Hilsabeck (GA) Wolfgang Stoeffl, Dan Casey, Todd Clancy (LLNL) Ken Moy (NSTec) 2015 National Diagnostic Workshop, Los Alamos, NM October 6 - 8, 2015

Outline

- Motivation for GEMS
- Review of Conceptual Design of GEMS
- Detector Simulation Benchmarking (in progress)

The ICF γ -ray Energy Spectrum provides 'burn-averaged' observables, providing a global reference for the line-of-sight-specific measurements

The ICF γ -ray Energy Spectrum provides 'burn-averaged' observables, providing a global reference for the line-ofsight-specific measurements **Burn-averaged observables**

GEMS total DSF will provide additional pR data independent of line of sight

- Total Y_{DT}
 - $Y_{DT} = B_{\gamma/n} Y_{DT\gamma}$
- **Total Down Scattering Fraction** (TDSF)
 - TDSF = 1 $(Y_{n(13-15)}/Y_{DT-\gamma})$
- Existing yield measurements compromised by:
 - Yn: neutron downscattering
 - GRH: interfered by $D(n,\gamma)$ and ${}^{12}C(n,\gamma)$
- $DT\gamma_0$ -rays could provide Total DT yield
 - Negligible DT-γ downscattering (unlike DT-n)
 - in-situ calibrations using DT Expl Pshr ($\rho R \approx 0$)

Slide 4

The ICF γ -ray Energy Spectrum provides 'burn-averaged' observables, providing a global reference for the line-of-sight-specific measurements

The ICF γ -ray Energy Spectrum provides 'burn-averaged' observables, providing a global reference for the line-of-sight-specific measurements

Burn-averaged observables

- Total Y_{DT}
 - $Y_{DT} = B_{\gamma/n} Y_{DT\gamma}$
- Total Down Scattering Fraction (TDSF)
 - TDSF = 1 $(Y_{n(13-15)}/Y_{DT-\gamma})$
- Cold fuel pR
 - D(n,γ)
- Ablator ρR
 - 12C(n,n'γ)
 - 12C(n,γ)

GEMS can improve Ablator ρR accuracy (GRH ~ 20 %) even at today's NIF yield

<u>Gamma-to-Electron Magnetic Spectrometer (GEMS)</u> concept has been proposed to measure the ICF γ spectrum

GEMS Design Challenges at NIF

~10⁵x more LPI X-ray than the DT fusion gamma-ray (looking at stars on sunny day!)

- To minimize NIF background radiation
 - X-ray filter + Background e-filter
 - Locating magnet & detector array outside NIF chamber
 - Fast electron detector (< 1.5ns)
 - Quartz Cherenkov radiator (> 175 keV)
- To improve sensitivity
 - Large gap electromagnet
 - Locating Compton converter inside NIF chamber

GEMS detection efficiency (η) was also calculated by Monte-Carlo simulations with constant magnet efficiency assumed

Physics-based Performance Goals (June 2013)

Торіс	Requirement	
Energy Resolution	∆E/E = 3-5% (e.g., 0.5 MeV @ 16.7 MeV, 0.2 MeV @ 4 MeV)	
Energy Range	Total: 2-25 MeV Single Shot: E ₀ ±33% (e.g., 10-20, 3-6 MeV) Separate 4.4 MeV channel when operating in 10-20 MeV mode	
Binning	\geq 20 energy bins (+1 for 4.4 MeV when tuned to 10-20 MeV)	
Temporal Response (fwhm)	< 1.5 ns (discriminate against LPI x-rays ~2 ns early and Chamber wall n- γ 100 ns later)	
SNR	> 5 for 100 γ	
Dynamic range	> 100	
Accuracy	Statistical <11%; Systematic < 10%; Total <15%	
Sensitivity	CH ablator ρR	Y>5e14 for ρR_{CH} >200 mg/cm ²
	Total DT yield	Y>2e15 for γ_0
	Fuel ρR	Y>1e16 for ρR_{fuel} >1 g/cm ²

Outline

- Motivation of GEMS
- Review of Conceptual Design of GEMS
- Detector Simulation Benchmarking (in progress)

Current Layout of GEMS Design Codes

Final Goal of Layout of GEMS Design Codes

Initial Coupling in Progress

LANL's Pretzel Spectrometer data can be used for benchmarking purpose

G. Morgan (LANL, 1991) → A. Gehring and M. Espy (LANL, 2015)

Storage phosphor images (A. Gehring and M. Espy)

UNCLASSIFIEDLA-UR-14-26491

Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

NATIONAL LABORATORY

EST.1943

Reconstructed spectra (A. Gehring and M. Espy)

UNCLASSIFIEDLA-UR-14-26491

Slide 18

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

ACCEPT simulation incorporating B-field tested with 15 MeV electron energy (C. Young)

Electron profile at focal plane from 15 MeV endpoint energy x-ray source striking converter (C. Young)

Energy Dist of Electrons

Summary

- GEMS can support high ρR implosions by providing unique observables:
- burn-averaged observables, providing a global reference for the line-of-sightspecific measurements
- Individual, direct measurement of Fuel ρR, Ablator ρR, and Total ρR
- GEMS conceptual design was completed (June 2013)
- Monte-Carlo simulation incorporated with B-field is in progress

