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 Motivation for GEMS
 Review of Conceptual Design of GEMS
 Detector Simulation Benchmarking (in progress)
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Burn-averaged observables
 Total YDT

• YDT = B/n YDT

 Total Down Scattering Fraction 
(TDSF)
• TDSF = 1 - (Yn(13-15)/YDT-)

 Existing yield measurements 
compromised by:
• Yn: neutron downscattering
• GRH: interfered by D(n,)

and 12C(n,)

 DT0-rays could provide Total 
DT yield
• Negligible DT- down-

scattering (unlike DT-n)
• in-situ calibrations using DT 

Expl Pshr (R  0)
GEMS total DSF will provide additional 
R data independent of line of sight
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Burn-averaged observables
 Total YDT

• YDT = B/n YDT

 Total Down Scattering Fraction 
(TDSF)
• TDSF = 1 - (Yn(13-15)/YDT-)

 Cold fuel R
• D(n,)

 Ablator R
• 12C(n,n’)
• 12C(n,)

GEMS can improve Ablator R 
accuracy (GRH ~ 20 %) even at 
today’s NIF yield 
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Need measure 4.4 MeV signal while 
in high energy (10 to 20 MeV) range  

4.4 MeV
detector

10 to 20 MeV @ 1200 G
(3 to 6 MeV) @ 400 G

coil

detector
plane

-to-e-

Compton 
converter

Gamma-to-Electron Magnetic Spectrometer (GEMS) 
concept has been proposed to measure the ICF 
spectrum



GEMS Design Challenges at NIF

 To minimize NIF background 
radiation
– X-ray filter + Background e-filter
– Locating magnet & detector 

array outside NIF chamber
– Fast electron detector (< 1.5ns)
– Quartz Cherenkov radiator (> 

175 keV)
 To improve sensitivity

– Large gap electromagnet
– Locating Compton converter 

inside NIF chamber
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-ray

~105x more LPI X-ray than the DT fusion 
gamma-ray (looking at stars on sunny 
day!)



GEMS detection efficiency () was also calculated by Monte-
Carlo simulations with constant magnet efficiency assumed

Slide 9

e

magnet
d d
d
 



    


Kinematic (converter & magnet 
aperture size and location)

Compton conversion

Magnet 
focusing

Constant Resolution E = 0.5 MeV

Sensitivity constrained by E/E and foil 
distance from TCC

Proposed foil 
location

Geant4 (GA), CYLTRAN (LANL)



GEMS Conceptual 
Design (June 2013)
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Physics-based Performance Goals (June 2013) 
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Topic Requirement

Energy Resolution E/E = 3-5% (e.g., 0.5 MeV @ 16.7 MeV, 0.2 MeV @ 4 MeV)

Energy Range Total: 2-25 MeV
Single Shot: E033% (e.g., 10-20, 3-6 MeV)
Separate 4.4 MeV channel when operating in 10-20 MeV mode

Binning  20 energy bins (+1 for 4.4 MeV when tuned to 10-20 MeV)

Temporal Response 
(fwhm)

< 1.5 ns (discriminate against LPI x-rays ~2 ns early and Chamber wall n- 100 
ns later)

SNR > 5 for 100 

Dynamic range > 100

Accuracy Statistical <11%; Systematic < 10%; Total <15%

Sensitivity CH ablator R Y>5e14 for RCH >200 mg/cm2

Total DT yield Y>2e15 for 0

Fuel R Y>1e16 for Rfuel >1 g/cm2
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Current Layout of GEMS Design Codes
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Final Goal of Layout of GEMS Design Codes
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Initial Coupling in Progress
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Initial coupling: converter & magnet only



LANL’s Pretzel Spectrometer data can be 
used for benchmarking purpose
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G. Morgan (LANL, 1991)   A. Gehring and M. Espy (LANL, 2015)

TOSCA 
simulation 

showing a set of 
tacks for a 10 
MeV beam of 
electrons (D. 

Barlow)

Magnet (Sm-Co)
Focal plane



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D LA-UR-14-26491

Storage phosphor images (A. Gehring and M. Espy)
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10 MeV e- 15 MeV e- 20 MeV e-



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D LA-UR-14-26491

Reconstructed spectra (A. Gehring and M. Espy)
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Raw Data Post-processed Data



ACCEPT simulation incorporating B-field 
tested with 15 MeV electron energy (C. Young)
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Electron profile at focal plane from 15 MeV endpoint 
energy x-ray source striking converter (C. Young)



Summary
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• GEMS can support high R 
implosions by providing unique 
observables:

- burn-averaged observables, providing a 
global reference for the line-of-sight-
specific measurements

- Individual, direct measurement of Fuel 
R, Ablator R, and Total R

• GEMS conceptual design was 
completed (June 2013)

• Monte-Carlo simulation incorporated 
with B-field is in progress


