

Exceptional service in the

national

interest

The Diagnostic Value of Tritium on Z

Contact:

Brent Jones, Manager Org. 1677, Neutron and Particle Diagnostics Sandia National Laboratories bmjones@sandia.gov

The Sandia Z Neutron and Nuclear Diagnostics Team:

Scientists: Gordon Chandler, Kelly Hahn, Carlos Ruiz Technologists: James Bur, Jose Torres

> National HED Diagnostics Workshop Los Alamos, NM October 6, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Fielding tritium on Z will open the door to valuable collaborative MagLIF physics studies, but is nontrivial

- Tritium is not presently fielded on Z
 - Vacuum chamber is open every day, MITL grinding, tanks of oil and water
- Community needs to assess the cost-benefit of using tritium at Z

- Tritium would open the door to nuclear diagnostic techniques and target physics studies not presently possible
- These opportunities would encourage collaboration on Z with the broader HED community

ICF neutron sources at Z can have very different implosion dynamics and plasma conditions

Adapting diagnostic technology to the Z environment can be challenging and rewarding

- Significant brems on Z can overdrive scopes, obscure the secondary DT neutron signal on nTOF detectors
- Fuel magnetization inferred from DT secondary spectrum

P. Schmit et al., PRL 113, 155004 (2014).

Gated PMTs, fast scintillators, close-in nTOF, clipper circuits, CVD diamonds

Several key physics issues could be addressed with DT experiments

		Tritium fuel content		
Physics	Measurement	<0.1%	0.1%	1%
Behavior of tritium in the Z pulsed power environment	Sampling of tritium contamination, migration			
Scaling of yield to DT— thermonuclear?	DT yield			
lon temperature and non-thermal population	Precision nTOF and DT/DD yield ratio			
Liner/fuel mix	DT yield with tritiated gas fill and deuterated liner			
Fuel morphology	Neutron imaging			
Thermonuclear reaction history	Gamma Ray History/GCD, Thompson parabola			
Liner/fuel density, non- thermal effects (peak shifts)	Compact/Magnetic Recoil Spectrometer (CRS/MRS), precision nTOF			

Diagnostic Capabilities enabled by tritium use will open new physics understanding for MagLIF

- Better SNR, higher dynamic range n-spectral measurements
 - More precise ion temperature
 - High precision Be down scatter measurements for liner ρR
 - MRS or CRS measurements both axially and radially
- Neutron imaging enabled by higher yields
 - Is the neutron producing volume the same as the x-ray producing volume?
 - Down-scatter image for liner ρR uniformity measurements
- γ reaction history enabled by higher yields and preferable γ -branching ratio
 - Is the x-ray history the same as the γ-history?
 - Does the reaction history have structure indicating multiple isolated burn regions?
- Novel mix studies are enabled by separated reactant experiments using tritium or tritiated hydrogen gas
 - Deuterated window to study window mix
 - Deuterated coating on liner interior to study liner mix
 - Deuterated top/bottom caps to study mix from laser interactions
 - Combine w/ neutron imaging to study transport of mix material

Gradual increase in MagLIF tritium fuel content will provide increasing scientific opportunities

Proposed Z Timeline

		DT yield scaling, ion temperature and non-thermal popu				
			Nuclear tracers for liner/fuel mix			
	Neutron imaging, high sensitivity for DD MagLIF, mixed DD/DT imaging (CR-39?					
Brems background measurements for GCD, shielding studies			GRH/GCD, Thompson parab., CVD dia.			
	Wedge range filter, 0	CRS design	MRS neutron spectroscopy			

We are collaborating with other National Laboratories to improve Z's neutron diagnostic suite

- LLNL: D. Fittinghoff, M. May
 - Neutron-imager
 - Goal (~1-2 yrs): Improve existing neutron imager at Z to achieve ~0.5-1 mm resolution (along ~ 5 mm length column) for > 5e12 DD yields (for DT in ~3 yrs).
 - CVD diamonds (with NSTec)
 - Goal: Measure neutron burn history with ~1-2 ns resolution for > 1e13 DD yields (for DT in ~ 3 yrs).
- LANL: H. Herrmann, A. McEvoy, R. Leeper
 - Gas Cherenkov Detectors
 - Goal (1-2 yrs): Measure Z background gamma spectrum, consider D-³He
 - Goal (~3-5 yrs): Measure neutron burn/reaction history with ~1-2 ns resolution for > 5e12 DT yields.

Neutron imager aperture hardware inside Z vacuum chamber

CVD Diamond Detectors

We are collaborating with universities to improve Z's neutron diagnostic suite

- UNM: G. Cooper and J. Styron
 - Thomson Parabola
 - Goal: Measure neutron burn history for
 > 1e13 DD (or DT) yields with 1-2 ns resolution.
- UR, LLE: V. Yu. Glebov
 - Gated and alternative nTOF detectors
 - Goals: Suppress large brems signal contributions to enhance small signals (DT and n-Be tails) and improve precision (for T_{ion}).
- MIT: R. Petrasso, J. Frenje, F. Seguin, M. Gatu-Johnson, H. Han
 - Neutron recoil spectrometers
 - Goals for next 1-2 yrs: Measure yield and spectra for 1e11 - 5e13+ experiments.
 - Longer term goal (~ 3-5 yrs): MRS-<u>Magnetic Recoil Spectrometer (>1e13 DT)</u>

Thomson Parabola

Gated nTOF

ions

Foil

External

🔀 magnet

Gradual increase in MagLIF tritium fuel content and essential collaborations will provide increasing scientific opportunities

Proposed Z Timeline

FY15		FY16		F۲	17	FY18	FY19	
	\bigtriangleup	\bigtriangleup			\bigwedge			
	Triti	um	Tra	ice	Trace	Minority	•	Tritiur
	Surro	gates	Tritiu	JM	Tritium	Tritium		Operation
	D ₂ , 3	³ He	ES	&Η	10x DT Yie	d >10 ¹³ DT	<i>r</i> ield	
	-		<0.1	1%	~0.1%	~1%		10-50%

Key Collaborations for Z Neutron/Nuclear Diagnostics (blue=tritium needed)

<u>NSTec</u> R. Buckles I. Garza K. Moy	<u>LLE</u> V. Glebov	<u>LLNL</u> D. Fittinghoff M. May	LANL H. Herrmann A. McEvoy	<u>UNM</u> G. Cooper J. Styron	<u>MIT</u> R. Petrasso et al.
Gated PMTs, NRPU clipper circuits, CVD diamonds	Gated PMTs	Neutron imaging, close- in nTOF, fast scintillators, CVD diamonds	Gas Cerenkov Detectors for DT burn history, study D ³ He reactions	Thompson parabola design study, diagnostic calibration, etc.	DD spectrometer (CR-39) leading to CRS/MRS

Our ability to minimize the impact on the facility depends on the ability to purge the tritium from the Z target chamber

- Purge efficiencies required to keep
 Z below control limits for tritium
 - Assuming entire surface area
 - 99.5 % for 10,000 dpm / 100 cm² (Contaminated area)
 - ~ 50 % for 1 e6 dpm / 100 cm² (Highly contaminated area)

Flow analysis of the Post Shot Air Exchange System for Z center section Volume = 66 m³ Total surface area = 464 m²

11

We recently completed development of the Z Gas Transfer System (ZGTS) capable of filling MagLIF targets in-situ on Z

ZGTS

- Robust tritium capable gas transfer system
 - Uses metal diaphragm puncture valve
 - Minimizes tritium inventory
 - Controls when and where tritium is used
 - Fills target in-situ just prior to shot

