

National Diagnostic Plan-overlap with CEA

Flat fielding NIF gated imager at Limeil- October 2015

3rd CEA_NNSA Diagnostic Meeting LLE 6/29/16 S. Batha, J. Kilkenny G. Rochau, C. Sangster

Key to the National Diagnostic Plan is the subject matter experts who have met ten times since 2009

National ICF Diagnostics Working Group October 6-8, 2015

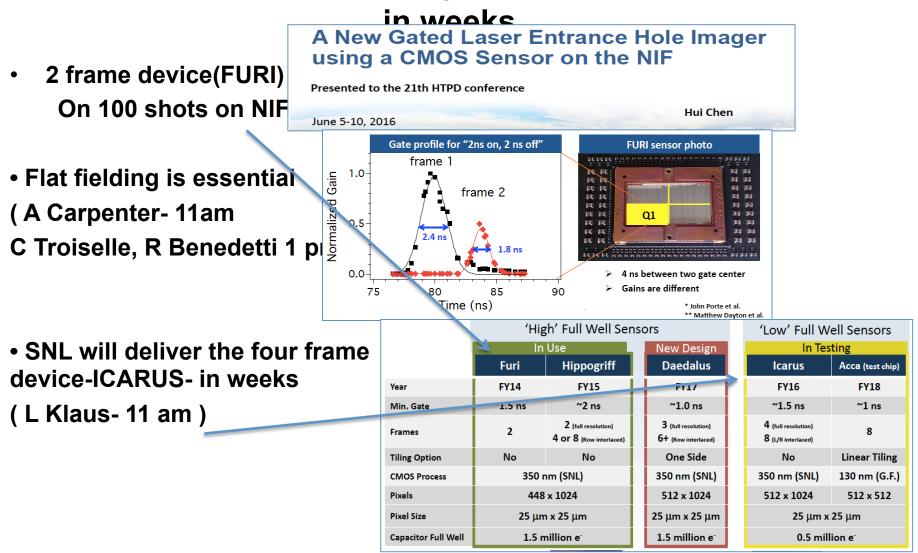
Next Meeting November 8-10, at LLNL- CEA welcome

The FY17 President's Budget substantially increased the na Diagnostic budget for FY17 by \$10M compared to FY16

	(Dollars in Thousands)					
	FY 2015	FY 2015	FY 2016	FY 2017	FY 2017 vs	
	Enacted	Current	Enacted	Request	FY 2016	
Inertial Confinement Fusion Ignition and High Yield						1
Ignition	77,994	77,994	76,334	75,432	-902	
Support of Other Stockpile Programs	23,598	23,598	22,843	23,363	+520	
Diagnostics, Cryogenics and Experimental Support	61,297	61,297	58,587	68,696	+10,109	-
Pulsed Power Inertial Confinement Fusion	5,024	5,024	4,963	5,616	+653	
Joint Program in High Energy Density Laboratory Plasmas	9,100	9,100	8,900	9,492	+592	
Facility Operations and Target Production	335,882	335,882	339,423	340,360	+937	
Total, Inertial Confinement Fusion Ignition and High Yield	512,895	512,895	511,050	522,959	+11,909	

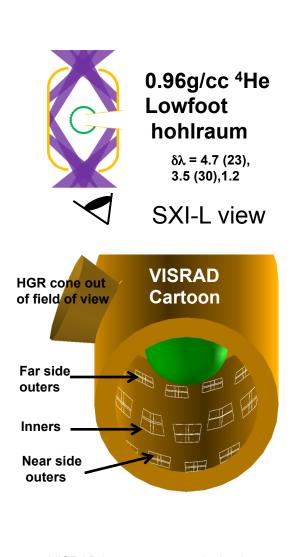
Explanation of Changes
FY 2017 vs FY 2016
Diagnostics, Cryogenics and Experimental Support
+\$10,109,000
 The increase supports the progressive execution of the National Diagnostics Strategy with primary focus on efforts to develop, advance, and implement transformation diagnostics at ICF/HED facilities.

"Transformative diagnostics" – Major national efforts with the potential to transform experimental capability for the most critical science needs across the complex

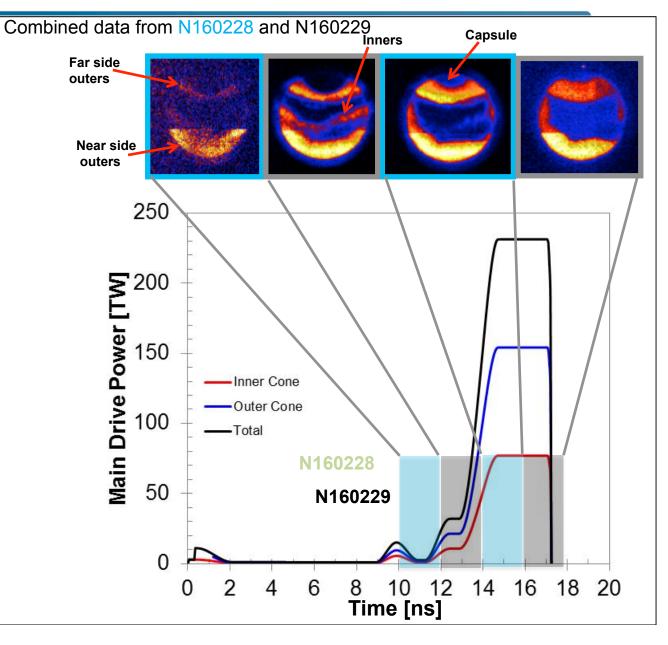

Transformational diagnostic	Institutions	Description
Single LOS imaging (h-CMOS, dilation)	SNL, LLNL, GA	X-ray gating along a single line of sight for all missions and all three facilities at time resolutions from 20-2000 ps.
Optical Thompson Scattering (OTS)	LLNL, LLE	UV Thompson scattering on NIF and OMEGA for hohlraum conditions, radiation channel flow, and discovery science
3D n/gamma imaging (NIS)	LANL, LLNL	Pinhole imaging along 3 lines-of-sight for 3D measurements of the burn in ICF capsules
Gamma spectroscopy (GCD)	LANL, LLNL, GA	Detailed determination of the burn history and shell rho-r in ICF capsules
Time resolved n spectrum (MRS-t)	MIT, LLNL, GA	Determination of the rho-r and ion temperature evolution during the burn in ICF capsules
Hi Res. X-ray spect. (HiRes)	LLNL, PPPL, LLE	Electron density and temperature in HED experiments and ICF implosions
Hard x-ray imaging (Wolter)	SNL, LLNL	High spatial resolution, large field-of-view, narrow-band imaging of high energy x-ray emission and backlighting
Time resolved diffraction	LLNL, SNL	Time-resolved phase determination of materials at very high pressure

Also broad and local class of diagnostics

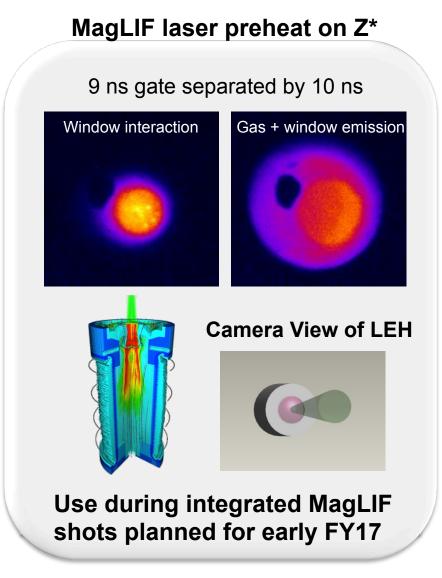
The transformational diagnostics are planned for all facilities


Transformational			
Diagnostic	NIF	OMEGA	Ζ
h-CMOS	SXI, SLOS	SLOS	Imager & Spect. 4 frame red.
Optical Thomson Scattering	5w, 3w	4w, 5w	Preheat FY19 Use NIF & OOMEGA
3D n imaging	polar, 2nd equator		
Gamma Cerenkov Detector	GCD, super GCD	(NTD)	GRH-tritium?
Time resolved n spect.	MRS-t		MRS-tritium?
Hi Res spectroscopy	3 xtal	hi res	XRS3
Hard x-ray imaging	3x Wolther	SLOS-2	Wolter
Diffraction(time)	FY19?		FY18- one frame FY20 vs time

A two frame gated CMOS- FURI is in use at NIF. Some issues but expect a delivery of 4 frame device-ICARUS



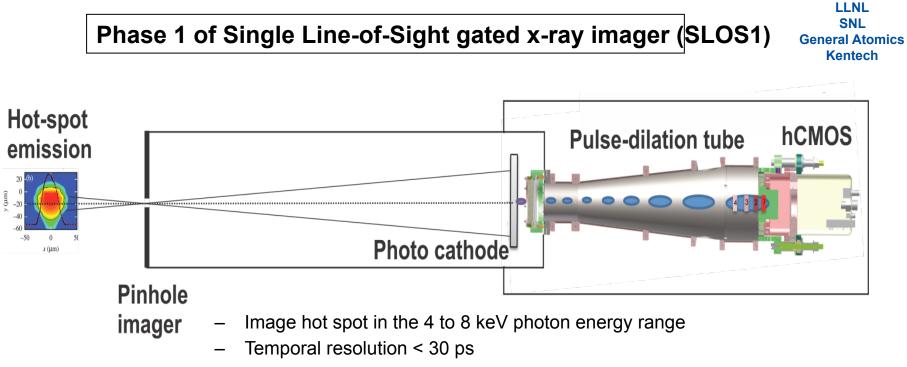
SNL thinks that exporting a system to France is "allowable"


The NIF gated LEH imager from SNL shows a time dependent inner / outer power balance during the low foot main drive

VISRAD img assumes emission is ~300um inside initial hohlraum radius

hCMOS imagers have been used on Z for laser preheat shots, and testing is underway for gated opacity measurements

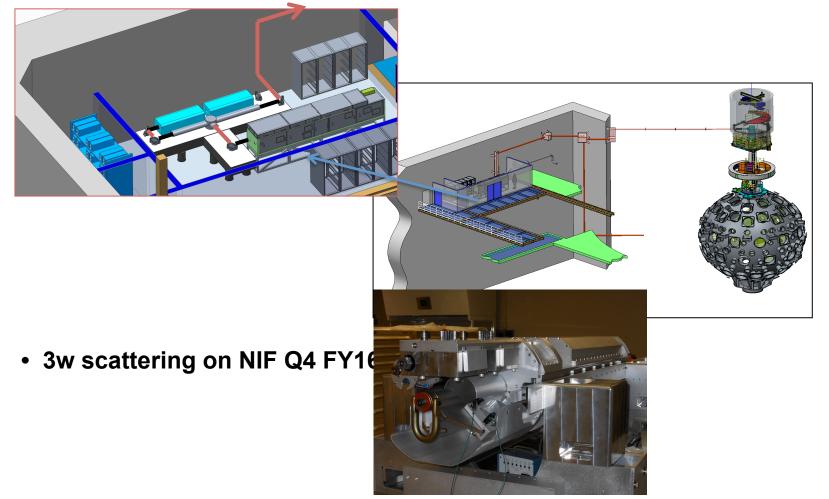
hCMOS testing for gated opacity


hCMOS assembly on an axial elliptical crystal spectrometer

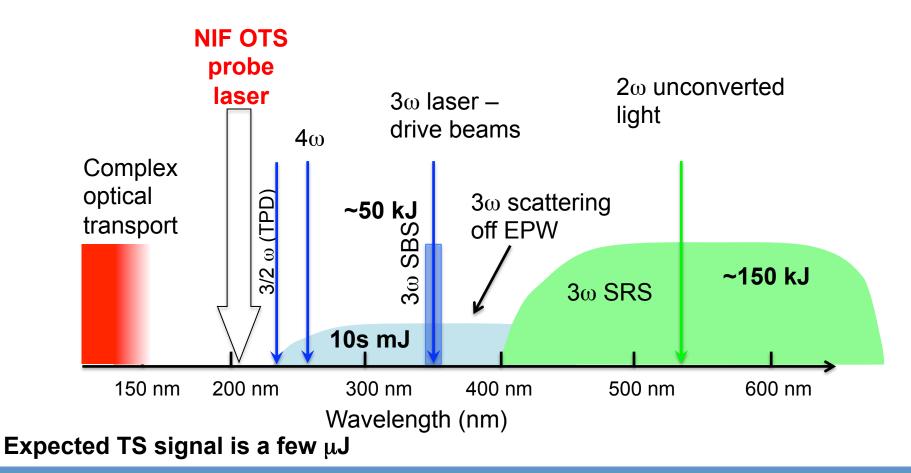
Initial measurements planned this summer

*Porter (SNL) et al.

Phase 1 of SLOS diagnostic on OMEGA comprises a pinhole imager, pulse-dilation tube, and hCMOS detector- Theobald 9:30

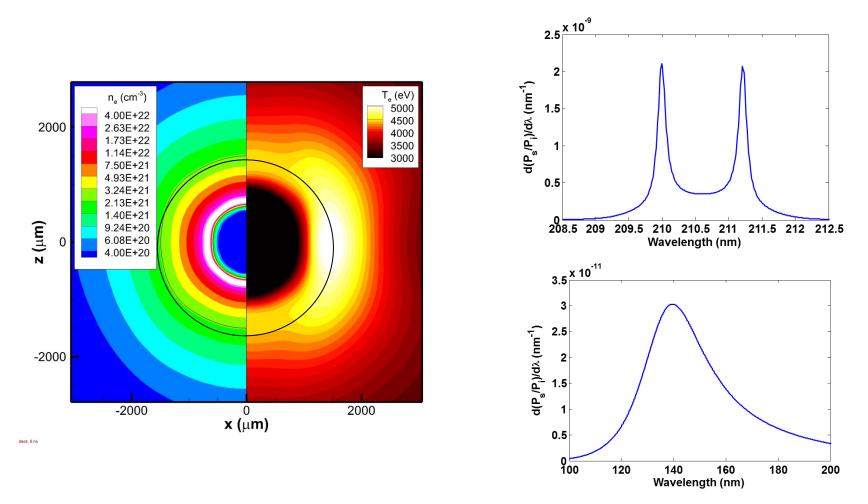


- 4 frames to sample ~100 ps neutron burn width from DT cryogenic implosions
- Pinhole imager provides ~7 μ m spatial resolution for ~20 μ m hot-spot radius



Optical Thomson Scattering

- 5 ω conversion efficiency ~ 20%, prize paper at CLEO- Begishev- tomorr
- NIF PAM + multi-pass simplified design- Ross tomorrow 8:30

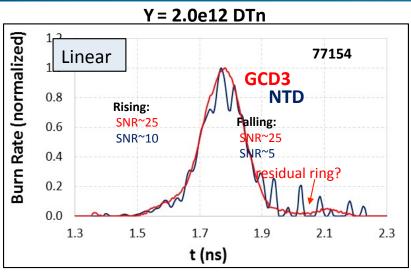


Thomson scattering from a deep-UV probe beam will overcome the harsh environment that challenges optical measurements in a hohlraum

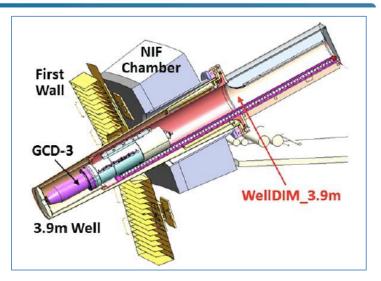
The deep-UV NIF OTS will be a pioneering diagnostic in Thomson scattering research

5ω Thomson scattering will provide access to quarter critical plasma conditions in polar direct drive experiments

Thomson scattering will characterize the significant angular temperature gradients predicted by hydrodynamic simulations

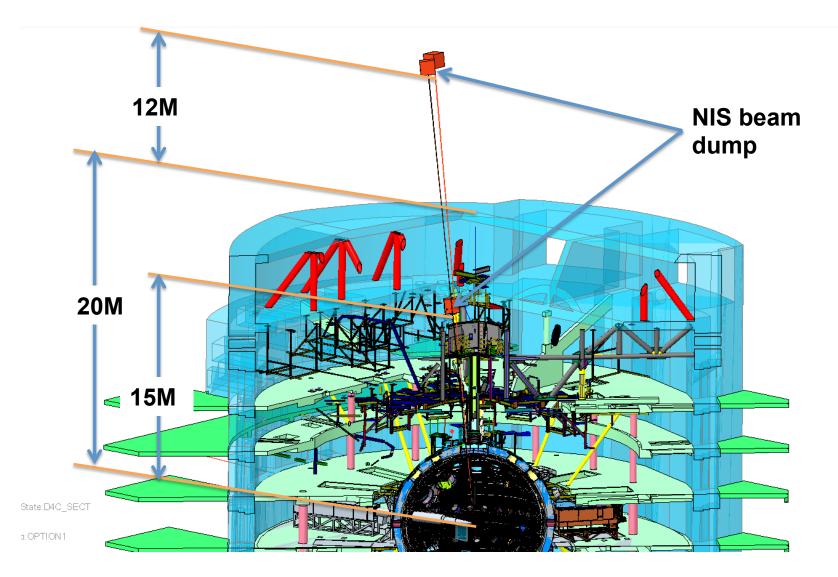

A new optical Thomson scattering probe beam on OMEGA will provide access to quarter-critical plasma conditions

- A sister Dynamic Compression Sector laser is being built to support Thomson scattering operations on both OMEGA and EP
- The new laser will decouple the probe beam from the main system allowing Thomson scattering on 60 beam experiments and provide a more flexible pulse shape/timing for all experiments
- The new system will provide 2ω , 4ω , and 5ω probe light
- Current 4ω operations is limited to thermal scattering at 12%N $_{\rm cr}$ due to refraction
- The new
- 5^o operations will enable:
 - •Access to $n_{cr}/4$ plasma conditions (T_e , T_i , N_e , V_{flow})


•The direct measurement of the amplitude of ion-acoustic waves driven by cross-beam energy transfer

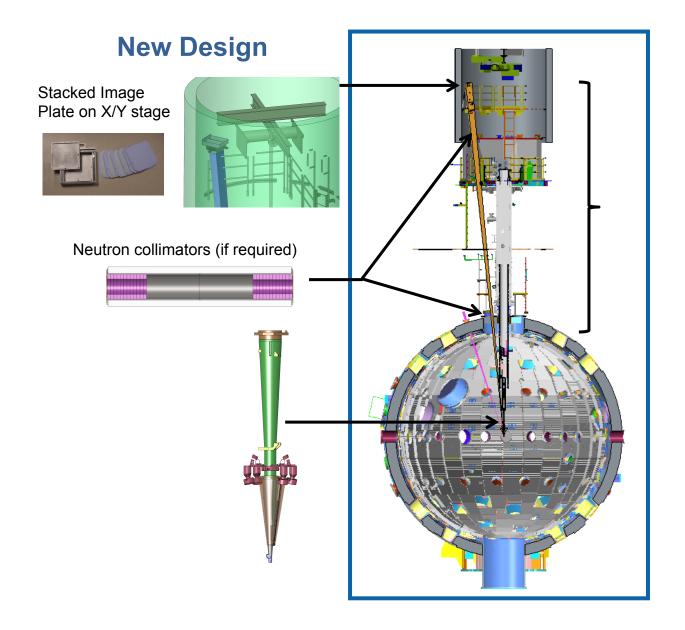
The new Thomson-scattering system will open a new regime of LPI physics on the Omega Systems

Neutron Temporal Diagnostic on OMEGA crucial truncated burn- NIF's Gamma-Cerenkov Detector (GCD) will be more sensitive and ultimately faster



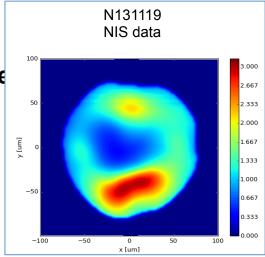
10 psec PMT being tested in July

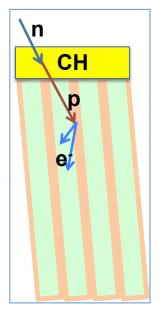
NIF


	PUDOR	291 Millstead Phone: +1 58 Fax: +1 585-7 E-mail: <u>sales@</u>
Name: Account:	Hans Herrmann LANL	Date: Quote #:
Phone:	(505) 665-5075	Contact Person:
E-mail:	herrmann@lanl.gov	Quote valid for:
Otv	Descriptio	
Qty.	Descriptio	
Qty.	Descriptio • Phase 1 - Proof of Concept Dr (POC TD-PMT)	
Qty.	Phase 1 - Proof of Concept Dr (POC TD-PMT) A POC TD-PMT will be designed	ift Time Dilation PMT
	 Phase 1 - Proof of Concept Dr (POC TD-PMT) A POC TD-PMT will be designe of concept drive electronics w tube will be packaged together 	ift Time Dilation PMT ed, modeled and built. Proof ill be constructed and the er with a compact solenoid
Qty.	Phase 1 - Proof of Concept Dr (POC TD-PMT) A POC TD-PMT will be designed of concept drive electronics w tube will be packaged togethe such that the front section of	ift Time Dilation PMT ed, modeled and built. Proof ill be constructed and the er with a compact solenoid
	 Phase 1 - Proof of Concept Dr (POC TD-PMT) A POC TD-PMT will be designed of concept drive electronics we tube will be packaged togethe such that the front section of 64mm diameter mount. 	ift Time Dilation PMT ed, modeled and built. Proof ill be constructed and the er with a compact solenoid
	 Phase 1 - Proof of Concept Dr (POC TD-PMT) A POC TD-PMT will be designe of concept drive electronics w tube will be packaged togethe such that the front section of 64mm diameter mount. The temporal recording cathode will be set al 	ift Time Dilation PMT ed, modeled and built. Proof ill be constructed and the r with a compact solenoid the detector will fit into a ing window at the photo- c approximately 500ps with a
	Phase 1 - Proof of Concept Dr (POC TD-PMT) A POC TD-PMT will be designe of concept drive electronics w tube will be packaged togethe such that the front section of 64mm diameter mount. The temporal record	ift Time Dilation PMT ed, modeled and built. Proof ill be constructed and the er with a compact solenoid the detector will fit into a ing window at the photo- t approximately 500ps with a better than 10psecs.

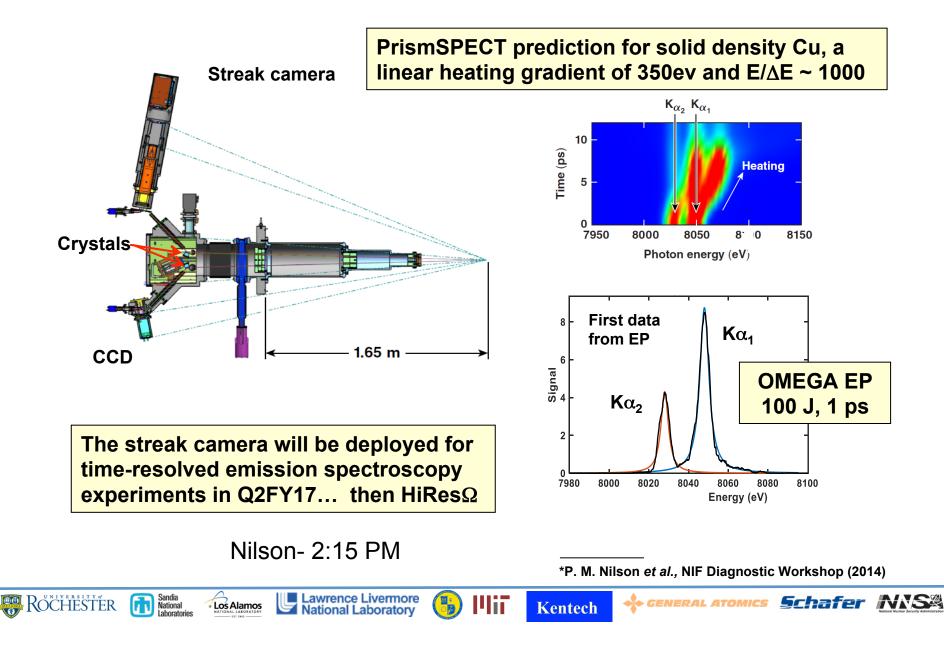
18 months ago we thought NIS had to be above the Target Bay on the roof costing \$nM like north pole nToF

A simplified detector design allows a near polar neutron image on NIF (un-scattered) in early FY17 –

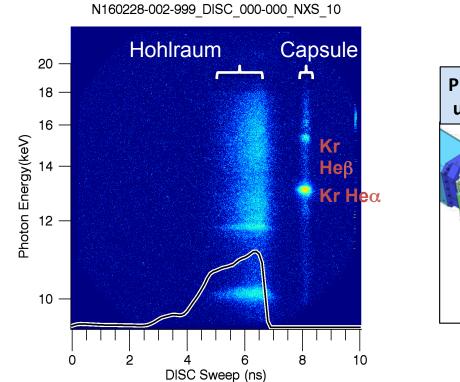

Hibbard -tomorrow

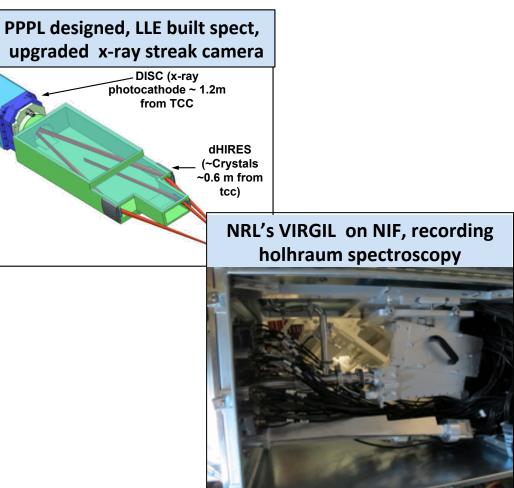


Neutron and gamma imaging

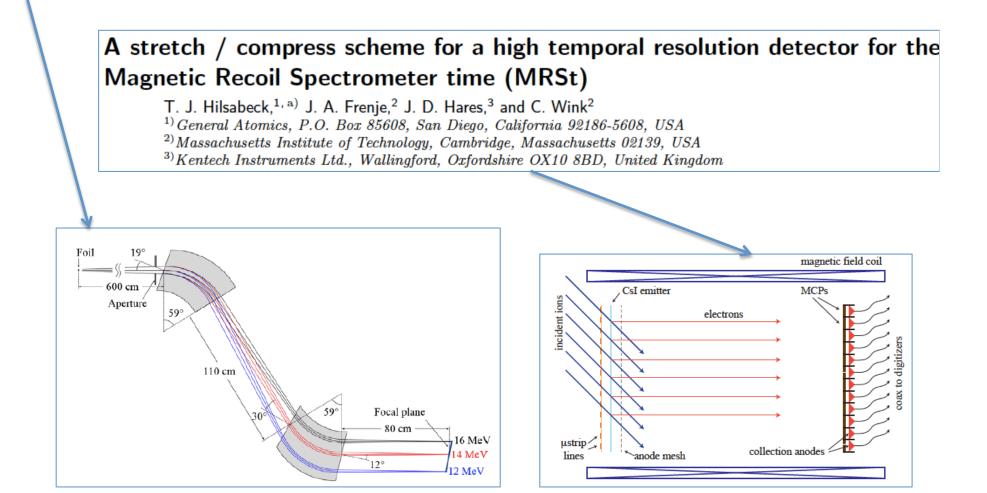

Down-scatter(DS) n imaging detects polar ice

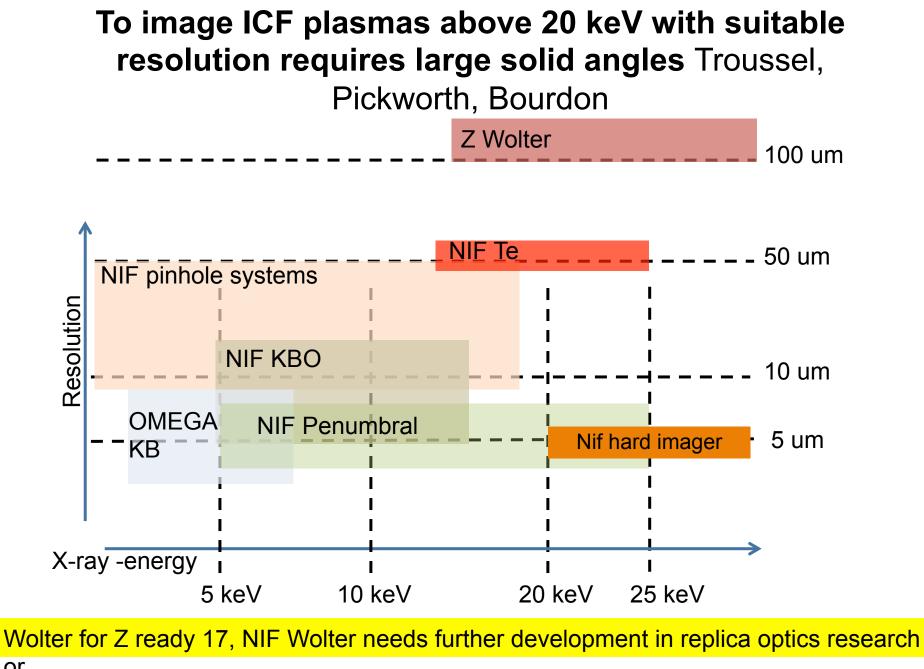
- More than 1 view is needed (Volegov)
- Polar view of un scattered image (Hibbard)
- Detector spatial resolution drives system cost (Grim)
- Direct MCP 14 MeV detection?
 new ideas for DS imaging better dx ?
- Gamma imaging demonstrated (Grim, Vologov)





HiRes, developed with PPPL, is an ultrafast, high-resolving power spectrometer for temperature-relaxation studies*


X-ray spectroscopy on NIF implosions



The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

J.A. Frenje¹, T.J. Hilsabeck², C. Wink¹, P. Bell³, R. Bionta³, C. Cerjan³, M. Gatu Johnson¹, J.D. Kilkenny², C.K. Li¹, F. H. Séguin¹ and R.D. Petrasso¹ ¹Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²General Atomics, San Diego, CA 92186, USA ³Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

or..

Dante Upgrades- electrical & x-ray

Clipper circuits, in situ calibration and more.....

CEA-NNSA Joint Diagnostic Meeting

Bart Beeman

Ongoing action item list 1 of 3

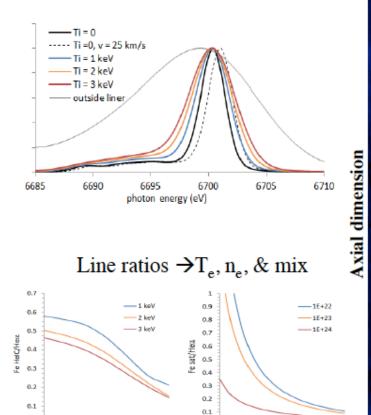
Subject	Conclusions @ the workshop	Next actions	Status- 6/28/16
	CEA is very interested to get such a framing camera for its LEH imagers and DMX central imager (LEH closure)	Request for US export to France authorization due to the present control export of such a camera	Ruling that export is allowable. SNL personnel could bring ICARUS to CEA . Flat field? and leave. Discuss purpose of first use.
	Too large Magnification Ratio for DMX LEH imaging due to the available camera active surface area	Find a solution to reduce this MR	
		Next VTCs (1 st ASAP) to define	NIF waiting to implement Need Multilayer mirror and housing
Au M-band flat & sharp spectral LLNL is interested to get such a channel for DANTE channel for Dante	- the requirement (broad band or few spectral channels) - spectral contrast - LLNL / CEA	that was designed and ready to fied on LLE DANTE	
		- the best fixture (old Phebus or new LMJ) - LLNL/CEA	
		 alignment accuracy of the Dante flange (LLNL) 	Need to develop an alignment procedure
Digital recording improvement for N	IF		
	LLNL is interested to get more clippers	New order request from LLNL	Done- Bart Beeman to report
Macaque/Souris remote calibration racks	LLNL seems interested to get such a system	First test needed on NIF?	Done- Bart Beeman to report
GXD #3 flat field tests @ CEA/DIF on 5w laser		A new period of test could be necessary to obtain more results	Report out in LLE- Recommend LLNL adopt optical + study optical vs x-ray Can we colaborate on Spatial resolution improvememnts

Ongoing action item list 2 of 3

Subject	Conclusions @ the workshop	Next actions	Status- 6/28/16
	LLNL is proposing to test such a system on NIF.	 Short term: requirements definitions (spectral range, distances and spatial resolutions number of images needed). 	Active discussion by Pickworth/ P Troussel.
Toroidal mirrors imaging	FODI LoS/ inserter envisaged.	 medium term: one image on NIF if interested to get one. 	Is toroidal optic resolution sharp enough?
		 longer term: multiple LoS imager well adapted to LLNL requirements. 	
APS-CCD-CMOS w/ global reset	CEA is developing hardened CMOS APS readout. By coupling it to a long decay scintillator and using the global reset feature, neutron induced bkgd is almost totally eliminated.		Visit 7/18/16 for test CEA rdump and readPHILIPPE PAILLET – CEA VINCENT GOIFFON – CEA SYLVAIN GIRARD – Univ. of XXXXX
	LLNL is interested to test it on NIF high neutrons shots on its dedicated neutron irradiation location (close to its wall or inside the TC)	(cables & FO links).	
Neutron Imaging			
Cadillac capillary array filling	LANL is interesting to be helped to fill a capillary array (dia. 80 mm for Cadillac)	CEA has an unused capillary cell already filled w/ deuterated scintillator (100 x 100 mm x 5 cm). Can be it used for that LANL first test on Cadillac?	LANL has drawings of the deuterated scintillator array. Measurements will be with WNR beam at LANL
	Both LANL and CEA agree to this	TIM#6/P7 port (well protected against BKGD) is unique and quite jammed.	
Multiview on Omega	possibility on Omega for preparing multiview on NIF and 3D reconstructions.	LLE is proposing to use another TIM (#3?)	
Back alignment	In case of the new ATLAS alignment system on NIF cannot use for the NIS alignment. LANL wish to use the CEA expertise into that area.	Wait for LANL needs.	NIF can use ATLAS

Ongoing action item list 3 of 3

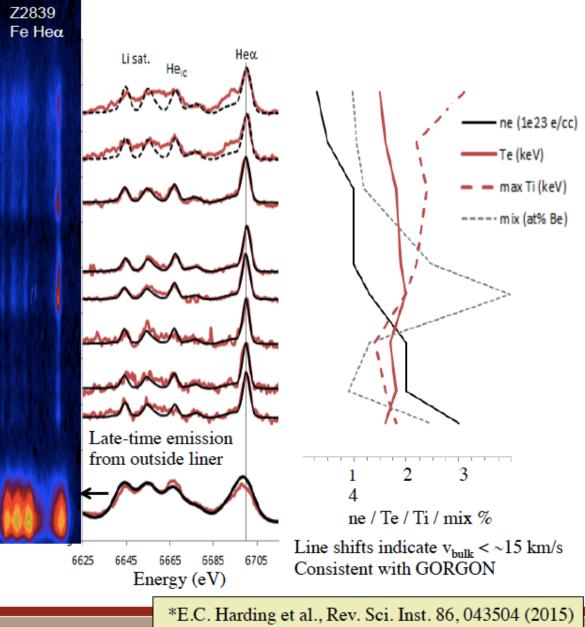
Subject	Conclusions @ the workshop	Next actions	Status 6-28-16
Fast hard x-ray scintillator	CEA have developed it (doped Bi into CH scintillators) for hard x-ray detection. Moreover it can be included by polymerization into any shapes as the FO faceplate or MCP.	in comparison w/ the new LBL scintillator? (decay time for ex.).	LLNL SNL still looking at options. Common test facility for scintillators?
CEA- CVD diamond results w/ data mining	CEA have the most complete set of CVD diamond detectors data on Omega (dixit J. Knauer).	J. Knauer proposes to use a graduate student to help CEA for this data mining (dose dependence).	
	This data base can be used to determine if the dose effect response modification is true or not.	CEA will try to organize the available results into a more detailed data base ready for this dose effect analysis.	
Tests of CVD diamond		J. Knauer must determine when his student can work on that data base.	
Spatially resolved Tion	CEA & LANL solutions are quite different but mutual information are welcome		
Streak camera, photocathodes and calibration	LLNL is not particularly interested in CEA's photocathodes and calibration studies in soft X-ray domain	1 - production design simulation of	LLNL is interested in structured Photocathode- NStech progress
French PhD students or postdocs on NIF for enhancing CEA/LMJ & LLNL/ NIF collaboration on ICF diagnostics	Can CEA find some postdocs or student ready to work on this collaborations subject on NIF? LLNL will pay them?	CEA agree for that proposal and will start immediately the research of such candidate interested to fill such a position @ LLNL/NIF	


Time line to achieve a high energy imaging system for HED /ICF

FY16	FY17	FY18	FY19	FY20
Omega KB				
Crystal Ba	cklit Imaging			
Pinhole/Pe T _e measur				
Z-Wolter			intermediate	
		Can we find a technology to f		
5µm NIF-V		l oughness Po	ssible production	

Details about stagnation from high-res, axially resolving XRS3* spectrometer

Line shapes $\rightarrow T_{ion}$, v_{bulk} , & r_{source}



0

1E+22

1E+23

electron density (e/cc)

Material provided by Stephanie Hansen and Eric Harding

0

1000

2000

electron temperature (eV)

3000

1E+24

The Diagnostic Steering Group will plan FY17 program in consultation with the site managers

MTE 10.3 by site

Site	FY17	FY17- FY16
	\$M	\$M
HQ	4.2	3.1
LANL	5.6	0.2
LLNL	47.4	3.3
NNSA		
ABQ	0	-2.8
SNL	7	3.7
LLE	4.5	2.5
Total	68.7	10

1 Late summer – after workshops – re-evaluate transformational diagnostics (progress & mission)

2 Late summer after markups work w site managers to plan a FY 17 work scope that is consistent with revised budget expectations to sites

NDP management group, with input from the SSP and HED programs, binned activities into three categories: Transformational, Broad, and Local

Transformational: Major national efforts with the potential to transform experimental capability for the most critical science needs across the complex

Broad: Significant national efforts that will enable new or more precise measurements across the complex

Local: Important efforts involving implementation of known technology for a local need

Transformational	Broad	Local	
16-frame high time-res gating	Neutron Temporal Diagnostic	KB microscope	
UV Thomson Scattering	Precision nToF	High energy spectroscopy	
Fusion Gamma(t,hv)	B-fields on NIF	Various NIF/Omega snouts	
3-D fusion burn imaging	Pulsed x-ray cal source	Crystal imaging & backlighting	
Fusion Neutron(t,hv)	Photon Doppler Velocimetry	Radchem	
X-ray(t,hν) λ/δλ ~ 10000	High-res x-ray streak cameras	many more	
20-50keV image,10 ps, <10μm	High energy detectors		
Diffraction(t)	Radiation hardening		
FY16 slightly less than 50% of diagnostic budget spent on transformational diagnostic			

Progress in FY 16 on transformative diagnostics- key issues only

<u>Gated x-ray imager</u> h-CMOS	Two frame imaging on NIF- 150 shots- epiphanous two frame used on Z for laser preheat shots First SLOS detector to go on OMEGA Q1FY17
<u>Optical Thomson Scattering</u> OTS	OTS: 5w conversion OK- 2 nd highest rank paper at CLEO Laser using NIF PAM + multi-passes lay out NIF detector commissioned with 3w scattering Q4 FY16
<u>3D n imaging</u> NIS	Detector for un-scattered neutrons simplified Polar imaging un-scattered n Q2 FY17
<u>Gamma Cerenkov Detector</u> GCD	GCD will measure burn truncation as well as nTD NIF GCD in 3.9m well Q4 FY16.
<u>Time resolved n</u> <u>spectrometer</u> MRS-time	Detector concept developed
<u>Hi Res x-ray spectroscopy</u>	OMEGA, resolved K _α splitting R ~8000 Z- Fe spectra from MagLIF NIF-Kr He like spectra doped gas implosion PPPL/LLE/LLNL spectrometer commissioned
Hard x-ray imaging	1FY17 Z Wolther CDR, commission late FY17