Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid

P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Soures

Laboratory for Laser Energetics, U. of Rochester

S. Cremer Rafail, Haifa, Israel

R. D. Petrasso Plasma Science and Fusion Center, MIT

IRIS-2D is an extension of the spherically symmetric Monte Carlo particle-tracking code *IRIS*. It tracks particles on a two-dimensional Lagrangian grid and will be used as a post-processor to 2-D hydrocodes to simulate experimental neutron and charged-particle spectra. In this talk, we use *IRIS-2D* to study the effect of asymmetry and instability-induced mix on the knock-on deuteron (deuterons elastically scattered off the 14-MeV DT neutron) spectrum and its angular distribution. We will present time-integrated knock-on deuteron spectra obtained by post-processing implosion calculations using the 2-D hydrocode *ORCHID*. Preliminary comparisons of these spectra with experiment will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

P. B. Radha *et al*. University of Rochester Laboratory for Laser Energetics 41st Annual Meeting of the America Physical Society Division of Plasma Physics Seattle, WA 15–19 November 1999

J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Soures

University of Rochester Laboratory for Laser Energetics

R. D. Petrasso and F. Séguin

Plasma Science and Fusion Center, MIT

S. Cremer

Rafael, Haifa, Israel

Summary Secondary protons can be used to deduce areal densities in compressed ICF targets

- Energetic secondary D-³He protons can be used as an areal density diagnostic for cryogenic DD targets.
- Recent measurements of the proton spectrum using the charged-particle spectrometer show qualitative agreement with 1-D calculations. However, quantitative agreements require at least 2-D simulations of the proton spectra.

- Calculations with *IRIS2D* suggest that the secondary proton spectrum may be useful in deducing the existence of low-order modes in DD targets.
- Guidance from 2-D simulations on the modal structure is required to further investigate the use of secondary protons to detect low-order modes.

Outline Secondary protons can be used to deduce areal densities in compressed ICF targets

- About secondary D-³He protons
- Preliminary experimental proton spectra
- IRIS2D and two-dimensional particle tracking
- Low-order modes and the proton diagnostic
- Conclusions

Two-dimensional calculations suggest that the presence of an l = 1 mode may be deduced using secondary protons

- Calculation uses an ice-block model with an imposed l = 1 Legendre mode.
- Primary particles (³He) are centrally produced and tracked; secondary protons are produced along ³He trajectories.

**IRIS2D*—A 2-D Monte Carlo particle-tracking code.

The mean energy of the D-³He proton* spectrum can be used to deduce the target areal density

See Séguin, this conference, paper KO2.07 *H. Azechi, M. D. Cable, and R. O. Stapf, Laser and Particle Beams 9, 119 (1991).

Preliminary measurement of the secondary proton spectrum shows good agreement with calculations

Proton energy (MeV)

• Quantitative agreement with experiment requires at least two-dimensional simulations.

Sensitivity of the mean energy to the modal structure is decreased with a non-central source for the primary ³He

- The location of the spectrometers will determine the observed difference of the mean energies for any mode.
- Guidence from 2-D simulations on the modal structure expected is required to further investigate the use of secondary protons to detect low-order modes
- to detect low-order modes.

IRIS2D tracks particles on a cylindrical Lagrangian mesh

- Interactions occur at discrete points along the trajectory.
- Charged particles undergo continuous energy loss.