Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System

F. J. Marshall, J. A. Delettrez, R. Epstein, V. Yu. Glebov, D. D. Meyerhofer, R. D. Petrasso, P. B. Radha, V. A. Smalyuk, J. M. Soures, C. Stoekl, R. P. J. Town, and B. Yaakobi.

Laboratory for Laser Energetics, U. of Rochester

The effects of beam smoothing, pulse shaping, and target dimensions on the compressed core and shell performance of directly driven plastic capsules are studied on the 30-kJ, 60-beam OMEGA laser system. Experiments are performed on surrogate-cryogenic capsules where the main fuel layer is a polymer shell (either CH or CD + CH) and the hot spot is provided by the fill gas $(D_2, DHe^3, DT, or H_2)$. The spatial evolution of the fuel and shell regions is recorded using both broadband and monochromatic time-resolved x-ray imaging techniques. Similar targets with inner Ti-doped layers provide additional spectral diagnostics of the shell and a source of monochromatic emission. Core conditions are diagnosed with measurements of the emergent x-ray, neutron, and particle spectra. For 1-ns-square drive pulses the calculated convergence ratios are in excess of 30, and the primary neutron yields are $\geq 20\%$ of clean 1-D with shell areal densities >100 mg/cm². Shaped pulse implosions have higher convergence ratios. Compressedtarget conditions measured include those of fuel and shell areal density, fuel ion temperature, shell electron temperature, and primary (DD) and secondary (DT) neutron yield. The effect of pulse shaping and the beneficial effects of beam smoothing on the final core conditions are seen in these measurements. Mixing, resulting from laserirradiation nonuniformities and target imperfections that seed the Rayleigh-Taylor instability, are observed in the x-ray and neutron spectra and are seen to depend on both the level of beam smoothing and the pulse shape. Comparison of these results with 1- and 2-D hydrocode simulations (including models of fuel-shell mixing) is ongoing. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority.

Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System

Frederic J. Marshall University of Rochester Laboratory for Laser Energetics 41st Annual Meeting of the American Physical Society Division of Plasma Physics Seattle, WA 15–19 November 1999

Contributors

Experimental: Vladimir Glebov David Harding Richard Petrasso Wolf Seka Vladimir Smalyuk Christian Stoeckl David Meyerhofer Barukh Yaakobi John Soures

OMEGA Laser Operations: Jack Kelly Sam Morse Greg Pien Laser Operations Staff Theory: Jacques Delettrez Richard Town Pat McKenty Reuben Epstein P. B. Radha

MIT: C. K. Li Damian Hicks Fredrick Séguin

LLE Staff: Many

Summary

We are investigating the effects of beam smoothing and pulse shape on target performance with OMEGA

 The core conditions of high-convergence-ratio targets have been diagnosed using x-ray, neutron, and particle spectroscopy:

 $[\rho R_{fuel}, \rho R_{shell}, T_e, and T_i, Y_n(DD), Y_n(DT)].$

- Increased SSD bandwidth improves target performance.
 - The improvement is most evident for the least-stable conditions (i.e., longer, shaped pulses).
- 2-D simulations of single-beam nonuniformity effects can account for the performance of the outer region of the shell.
- Low 1-mode contributions due to beam balance appear to limit the performance of the most-stable, low-convergence-ratio targets.

Current OMEGA experiments are preparatory to cryogenic implosions on OMEGA and NIF ignition

- OMEGA cryogenic implosions are energy scaled from NIF ignition target designs.
- Current noncryogenic implosions study hydrodynamics and stability issues.
- The CH shell corresponds to the main fuel layer (DT ice), and the fill gas corresponds to the hot-spot-forming central DT gas.

20-µm-thick plastic shells driven by 1-ns square pulses show similar stability to the OMEGA α = 3 cryo design

with Takabe growth rates and Haan saturation.

Outline Direct-drive, high-convergence ratio implosion studies on the OMEGA laser system

- Review of recent OMEGA results
 - Gas-filled shells
 - Beam-smoothing effects (SSD bandwidth)
 - Pulse shaping
- Diagnostics
 - Neutron yield and spectroscopy
 - $[\textbf{Y}_{n}(\textbf{DD}), \textbf{Y}_{n}(\textbf{DT}), \rho \textbf{R}_{fuel}, \rho \textbf{R}_{shell}, \textbf{T}_{i}]$
 - Charged-particle spectroscopy
 - $[\mathbf{Y}_{\mathbf{p}}(\mathbf{DHe^3}), \rho \mathbf{R}_{total}, \mathbf{T}_{i}]$
 - X-ray continuum spectroscopy and imaging of Ti-doped shells $(\rho \textbf{R}_{\textbf{shell}},\textbf{Te})$
- Conclusions
 - SSD smooths the high l-mode nonuniformities.
 - SSD benefits the least-stable implosions (shaped pulses) the most.

Fuel performance improves with increasing shell thickness

Primary fusion yield (DD) from CH targets is a function of the shell stability

• Shell convergence ratio (shell CR) is a measure of shell stability.

The least-stable implosions show the most improvement with SSD.

We are using three principal methods to determine $\rho \textbf{R}$ in compressed CH shells

- X-ray absorption: continuum or high-Z K-shell
 [ρR_{shell}, T_e]
- Secondary (DT) neutron yield from D in gas or shell (CD) [Y_n(DD),Y_n(DT), ρR_{fuel}, ρR_{shell}, T_i]
- Charged-particle energy loss of 14.7 MeV proton (D-He³ reaction) [Y_p(DHe³), ρR_{total}, T_i]

ORCHID simulations are used to estimate the effects of high-1-mode nonuniformities on measurements

SSD increases the fuel ρR of shaped-pulse implosions

20-µm-thick, 3-atm-D₂-filled CH targets

Secondary yields measured by MEDUSA

The experiments performed with and without CD layers put limits on the amount of mixing at stagnation

5 Normalized secondary 4 spectrum **Inner CD layer** 3 1-µm offset 2 embedded CD layer **No CD layer** 1 0 10 15 20 5 Energy (MeV)

27- μ **m**-thick, 3-atm D₂-filled CH targets, 1-ns square pulse.

Minimal mixing within the inner 2-µm shell region is observed.

The OMEGA charged-particle spectrometers (CPS) measure the total $\rho \textbf{R}$

20-µm-thick, 3-atm DHe³-filled CH targets, 1-ns square pulse

The shell ρR is determined from the secondary neutron yield and from the 14.7-MeV proton energy loss

The methods give consistent values for the shell ρR (the yield ratio determined values are lower limits).

The 5- to 7-keV x-ray images show a more-compact and integral stagnation region with increased SSD bandwidth

20- μ m CH shells, 1-ns square pulse, 25 kJ, Ti-doped embedded layers

ORCHID is used to simulate the effect of shell nonuniformities on x-ray images

3-atm-filled, Ti-doped, 20-µm CH shells, 1-ns square pulse

2-D ORCHID x-ray emission profile shows a similar size but different width than seen in the KB microscope image.

SSD has a dramatic effect on the final stagnation of direct-drive ICF capsules

20 kJ, PS26 pulse shape, with DPP's, 0.95-mm diameter 3 atm H₂-filled, 27- μ m-thick shells

X-ray spectral measurements have confirmed the beneficial effects of SSD on direct-drive implosions

E9436

2-D ORCHID simulations qualitatively agree with experimental measurements of cold shell ρ R

Summary/Conclusions

We are investigating the effects of beam smoothing and pulse shape on target performance with OMEGA

- Increased SSD bandwidth improves target performance.
 - The improvement is most evident for the least-stable conditions (i.e., longer, shaped pulses).
- 2-D simulations of single-beam nonuniformity effects can account for the performance of the outer region of the shell.
- Low 1-mode contributions due to beam balance appear to limit the performance of the most-stable, low-convergence-ratio targets.