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Abstract

The filamentation and SBS of laser beams have been observed in
numerous ICF experiments. We are interested in how sound-wave
nonlinearities modify the evolution of these instabilities. A standard model
for nonlinear sound waves consists of the ion-fluid and Poisson equations.
In this model the electron fluid is assumed to respond adiabatically to
the electric field produced by the motion of ion fluid. We have written the
code to solve the system of ion-fluid equations for two ion species and
Poisson equations. To simulate the generation of sound waves by
backward and forward SBS a linear ponderomotive potential term was
added to the Poisson equation. We will describe the results of preliminary
simulations of sound-wave generation in a two-ion plasma.



Introduction
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e The filamentation and SBS of laser beams have been
observed in numerous ICF experiments.

« We are interested in how these instabilities grow and
saturate in two-ion plasmas.

e This study concerns linear and nonlinear sound waves
in two-ion plasma.
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Sound waves are governed by the ion-fluid
and Poisson equations
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* lon-fluid equations include mass and momentum conservation
equations for both species

0¢Ng +0y(ngVvg) =0,
dt Vs + Vg 0y Vs +0 50y @/Bs =0,

where s =1 denotes light ions and
s = h denotes heavy ions

oy =1;B1 =L an =Zn/Zy; By =mp/my
« Assuming a Boltzman electron response we obtain Poisson equation
0%xP—exp (@) +3 > Osyshs =0,
s=1lh

Nho

where d=njgZj/nNeo; Yl =1 and yp = -
10
“e” denotes electrons

“0” denotes values in equilibrium state.
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We solved the IFP equations numerically
using standard schemes
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 We solved the fluid equations using the leap-frog scheme
i+2 _ i O i+1 i+l i+1 ., i+1 [
+
nSJ SJ+1 nSj 1[/2 AtS] SJ+1 Sj+1 nSJ 1VSJ 1|:/AX
i+2 _ +1 +1/n Qe cf 1 O
Vsj J+1 Jl[’/z At%ﬁ#ﬂ 2+Gs(q+1 BS 5/1 14 2= Us —1/BS%/AX’

where i (J) denotes the number of time (spatial) steps.

« We solved the Poisson equation using Newton iteration; with the new ny and ny,
known, we wrote the new @ as the current @ plus Agp and iterated

(-Aq_1+2A¢ -Aq.1)/Ax +exp g (B,

Y _ 2 _ .

—((Pj—l 2(H+(PJ+1)/AX eXp([]+5Z Os Ys Ng;j
s=1Lh

until the accuracy goal |Ag| < € was achieved.
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Dispersion is modeled correctly
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* Linear KDV equation associated with
IFP equations: Initial conditions

at(P"'l\/lo(ax(P"’ag):xx (P/Z) =0, w 10 A -
°C o g [ ]
where the linear Mach number 87
5 /2 3z OF i
Mo=t > GSVS/BSE <1 5E 4F -
s=h,I Sg o _
* |nitial conditions: 2 0 AN T N
0 50 100 150 200
_ U2 2
%0.x) = a@xp( x*/2L ) Distance
vs(0,x) = ag @(O’X)/MO Bs
_ Solutions of linear
Ns(0,x) =1+ Vs (0,x) Mo KDV and IFP equations
* Analytical solution of linear KDV U“.; 10 LN i
equation: =9 8 Analytical -
— X .
@t x) = av2mexp (1+ 6Z3E)/1216] 25 OF Numerical -
— - zl
: 3 4 o o I
<[+ 42) fa2t] e g3 5|
where = 0 L

_ V34 g 0 50 100 150 200
{=[3Mgt/2]7° /L, &=(x —Mgt)/L Sistance
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Nonlinearity and dispersion cancel each other
for specific wave profiles
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o Solitary-wave solutions satisfy the equation

(da <P)2 =V(9),

where & =x-Mt, M=Mg (1+¢).

— The potential function

[]
12
V(Q) =2 [@xpe+Md 3 VSBS(MZ_ZO‘S(P/BS) -1-M®3 3 ysBs
s=1h s=Lh

HINFE

* Ordinary differential equation for stationary wave profile was solved

— numerically
— analytically by expending @in powers of €

-1
s O a3y 1U
de)=acsech?(). @zt gz o Ko E2M0)
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Solitary-wave propagation is modeled correctly
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How do waves in one- and two-ion plasmas compare?
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Compare a two-ion plasmato a light-ion plasma of equal electron density.
« The heavy species are less mobile.

e Poisson: a)z(xcp—ecp+1+6n| +0np =0.
For a given potential dnyis - same.

e Since nj <1, dny/nyis larger.

e Since ony/njy - k?/w? o the linear phase speed is lower.
1/

 Nonlinear effects are more important.
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In LPI's sound waves are generated by PM force

UR
LLE
« The PM generation of a plasma channel by a Gaussian laser beam
was simulated by Liu et al. The results of our simulations
are in qualitative agreement with Liu.
Light-ions density perturbation Heavy-ions density perturbation
T T T 1.05 . :
1.6 i
2 12 = 100
7)) (7)) N
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Distance Distance

 For astrong PM force the shapes of light- and heavy-ions density
perturbations are different. This is the manifestation of nonlinear
dynamic effects.
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Summary
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« We simulated the propagation of linear and nonlinear sound waves
In two-ion plasmas.

 For the test problems considered, our code results agree with our
theoretical predictions.

* In cold-ion plasmas the light ions dominate the physics of sound waves.
Since the heavy ions are immobile, the light ions must maintain charge
guasi-neutrality by themselves. If one compares a two-ion plasmato alight-
ion plasma of equal electron density, this requirement increases the relative
density and velocity perturbations of the light ions, reduces the sound
speed, and increases the importance of light-ion fluid nonlinearities.

* In warm-ion plasmas two types of sound waves exist: fast waves
(wk > Vth|) and slow waves (Vthh <whk < Vthl)-

e Our preliminary analysis shows that light ions dominate the physics of fast
waves, but heavy ions play a significant role in the physics of slow waves.
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There are two types of sound waves in “warm” plasma
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Finite temperature effects modify the momentum conservation equation
0tVs *Vg0xVs + 0505 @/Bs +30sns0xNs /BsZ|Be =0

Dispersion relation

5y agyskz/(BSmZ -1sk?) =1
S

Relations between amplitudes

Ng :aS/(BSVFZ ‘Ts); vs = Vg [ds

Two roots of equation for phase velocity correspond to
1. Fast mode w/k >Vip,

2. Slow mode Vi, <wk <Vip,

* For the fast mode ony << ony, but for the slow mode onp, * onj.

P2039



