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The transference of perturbations from the inside of a DT-ice layer to the ablation surface
(called “feed-out”) is a potential problem for high-gain, direct-drive inertial confinement
fusion targets. This problem has been addressed theoretically1 with a model that is valid
for wave number times the compressed-target thickness kdc < 1. The work described is a
series of planar experiments designed to study the feed-out of rear-surface perturbations
to the ablation interface. We irradiate 20-µm-thick CH targets with 351-nm radiation
from the OMEGA laser. The incident laser pulse shape is a 1-ns rise to a 2-ns constant
intensity of 1 × 1014 W/cm2. The single-mode, rear-surface perturbations have
wavelengths of 60, 30, and 20 µm with an initial amplitude of 1 µm. The range for kdc
for these experiments is from 0.5 to 1.5. The theoretical model is compared to both the
2-D hydrodynamic simulation and the experimental data. This work was supported by the
U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative
Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York
State Energy Research and Development Authority.

1. R. Betti et al., Phys. Rev. Lett. 81, 5560 (1998).
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Feed-out of the rear-surface perturbation has
been measured for 0.6 < kdcompressed < 1.8

Summary

• The experiment was configured to measure the feed-out
of large-amplitude, rear-surface perturbations.

• Hydrodynamic simulations agree with the feed-out of a
rear-surface perturbation and Rayleigh–Taylor growth on
CH targets.

• Target ∆ρr’s calculated from the theoretical model of
R. Betti1 et al. agree with the experimentally measured
optical depth.

1R. Betti, V. Lobatchev, and R. L. McCrory, Phys. Rev. Lett. 81, 5560 (1998).
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Feed-out of rear-surface perturbations
to the ablation interface and subsequent growth

Outline

• Experimental configuration

• Hydrodynamic simulations and experimental data

• Theoretical model and experimental data
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The OMEGA laser system illuminated the target at
2.0 × 1014 W/cm2 with a beam nonuniformity of 2.4%
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Feed-out of the rear-surface perturbation
was measured for three wavelengths

• Perturbation wavelengths used were
60 µm with a 0.5 µm amplitude
30 µm with a 0.5 µm amplitude
20 µm with a 0.5 µm amplitude

• Target foils were constructed from
20-µm-thick CH.

• Targets with 60-µm wavelength perturbations
had a front-surface amplitude = 10% of rear-
surface amplitude (0.05 µm).
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Hydrodynamic simulations of feed-out
agree with the experimental data
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If the rear surface is rippled, the rippled rarefaction wave
will imprint a perturbation on the ablation front (feed-out)
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When the rippled rarefaction wave reaches the ablation
front, it imprints a velocity perturbation and the ablation
front develops a ripple that starts growing linearly in time

∆t =
Ar
Cs

v = g∆t

g trb( ) =
5
2

P
ρd

This theory is only valid for k dc < 1.
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The acceleration as calculated by a planar-foil model
agrees with the results from ORCHID simulations
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Calculated ρR from Betti’s long-wavelength model
agrees with experimentally measured optical depth

• ρR is scaled by x-ray mfp and framing camera MTF.
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Feed-out of the rear-surface perturbation has
been measured for 0.6 < kdcompressed < 1.8

1R. Betti, V. Lobatchev, and R. L. McCrory, Phys. Rev. Lett. 81, 5560 (1998).

Summary/Conclusions

• The experiment was configured to measure the feed-out
of large-amplitude, rear-surface perturbations.

• Hydrodynamic simulations agree with the feed-out of a
rear-surface perturbation and Rayleigh–Taylor growth on
CH targets.

• Target ∆ρr’s calculated from the theoretical model of
R. Betti1 et al. agree with the experimentally measured
optical depth.


