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T. R. Boehly, and O.V. Gotchev
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The control of laser imprint is of crucia importance for the successful implosion of
direct-drive inertial confinement fusion targets. Irradiation nonuniformities generate, or
“imprint,” modulations in the ablation pressure that seed the Rayleigh-Taylor (RT) and
Bell-Plesset (BP) instabilities, which in turn degrade the symmetry of the implosion and
reduce the target performance. To gain physical insight, an analytical model of imprint
has been developed. The model takes into account the dynamics of the conduction zone,
mass ablation, and the SSD smoothing scheme. The important parameters that
characterize laser imprint are found to be the time scale for plasma atmosphere formation,
the ablation velocity, and the density-gradient scale length. The first determines the
smoothing rate due to thermal transport in the conduction zone, and the last two
characterize the dynamic overpressure stabilization described in Ref. [1]. The model has
been validated by comparisons to detailed multidimensional hydrocode simulations using
arange of ablator materials, perturbation wavelengths, and pulse shapes. The model has
been found to be in good agreement with a series of planar-foil imprint experiments
performed on the OMEGA laser system at the University of Rochester’s Laboratory for
Laser Energetics. Imprint’s effect on NIF and NIF-scaled OMEGA cryogenic targets has
been studied. It is has been shown that such targets will remain intact during the
implosion when the laser is smoothed with 1 THz 2-D SSD. This work was supported by
the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative
Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New Y ork
State Energy Research and Development Authority.

[1] V. N. Goncharov, Phys. Rev. Lett. 82, 2091 (1999).
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Summary
An analytical model is developed to gain

physical insight of the laser imprint
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e Laser nonuniformities imprint surface modulations
that degrade the symmetry of implosion.

 An analytical model has been developed to determine
the physical processes contributing to imprint.
— Hydrodynamic flow is the main imprinting mechanism.
— Thermal smooting and the dynamic overpressure
are the main processes reducing the imprint.

o Laser imprint, with 1-THz SSD beam smoothing, will
not significantly degrade cryogenic-target performance.
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Outline
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Laser imprint in direct-drive ICF

Processes contributing to laser imprint

Processes reducing laser imprint

Analytic imprint model
— comparison with 2-D numerical simulation
— comparison with imprint experiments

Effect of imprint upon NIF ignition targets
— polymer overcoat
— SSD beam smoothing
— target gain
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In direct-drive target designs developed at LLE,
the fuel isentrope is controlled by the shock preheat
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* Direct-drive, a = 3, NIF ignition target design
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Laser imprint degrades target performance
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Processes contributing to imprint

UR

LLE

* Velocity pertubation due
to nonuniform shock propagation

» Acceleration perturbation from the lateral
flow in the compressed region
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Hydrodynamic flow is the main imprint
mechanism: velocity perturbation
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» Shock speed depends of the ablation pressure Ug ~{pa
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Hydrodynamic flow is the main imprint
mechanism: acceleration perturbation
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 Rippled shock creates lateral mass flow.
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Physical mechanisms reducing imprint
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e« Thermal smoothing

 Dynamic overpressure (rocket effect)

— ablation-surface oscillation

« Fire polishing, vorticity convection
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Thermal smoothingd suppresses
acceleration perturbation
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« Laser perturbations decouple from the ablation front when kD, ~1

Decoupling time tp O (kVe)L

1K. A. Brueckner and S. Jorna, Rev. Mod. Phys. 46, 325 (1974).
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Imprint growth is reduced by thermal smoothing
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« After decoupling timet>tp, a=0.
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Late-time imprint growth is stabilized
by dynamic overpressure
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Late-time imprint growth is stabilized

by the dynamic overpressure
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Ablation front
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Mass-spring system
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Imprint amplitude is determined by the decoupling
velocity and oscillation frequency
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The most damaging modes oscillate
during the shock propagation
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e Single-mode imprint ORCHID simulations
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Imprint model
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Description of the model

Results
— ablation-surface oscillations

— Imprint amplitude

Comparison with simulations

Comparison with imprint experiments
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The analytic model is based on solution
of the sharp boundary model
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Shock front Ablation front Assumptions
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relations

 Model is solved by multiple-scale technique.
TszSt T=k VaVb|t E:kVat

Oscillations are damped
by fire polishing and
vorticity convection.

TC5214



The imprint amplitude is determined by the decoupling
velocity and oscillation frequency (Nyax = Vp/®)
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Comparison of CH and cryo DT ablators, | = 3.0 x 1013 W/cm?2

Decoupling velocity vp ~ cg/vC Oscillation frequency w=Kk4/VaVp
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ORCHID simulations confirm
the predictions of the model
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The imprint amplitude and oscillation period
are reduced by increasing laser intensity
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Simulations confirm that the imprint amplitude
and laser oscillation period are reduced
by increasing laser intensity
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 Cryo DT planar foil
e Thickness =345 um

n(um)/(al/1)

« Flat-top laser pulse
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Shorter-wavelength nonuniformities have lower
iImprint amplitudes and shorter oscillation periods
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 Model: | Nmax = A Tosc ~ A

« ORCHID simulation: DD, NIF, a = 3, “all-DT” target design
— 1=3.0 x 1013 w/cm?
— thickness =345 um
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The model has been tested against planar-foil imprint
experiments performed on the OMEGA laser system*
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e 20-pm-thick CH
 Two laser pulse shapes; two perturbation wavelengths
 Nonuniformities were measured using through-foil x-ray radiography.
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* Imprint is quantified by the mass equivalence.
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The results of the experiments agree with imprint
simulations and predictions of models
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Higher intensities and shorter perturbation wavelengths
imprint less for modes with tp < shock breakout time
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Application of the model: effect of imprint
on direct-drive NIF ignition design
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« Effect of polymer overcoat
» Effect of SSD

e Target gain

TC5282



The thin polymer layer required for target

fabrication results in enhanced imprint
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Simulations show increased imprint
for polymer overcoated targets

UR
LLE

e ORCHID simulation; pertubation wavelength A =40 um
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Without SSD, thermal smoothing and dynamic
overpressure do not reduce imprint to the levels
required for high-gain implosions

LLE
* NIF direct-drive, a = 3 target design
— mode spectrum from DPP’s and DPR’s; no SSD
— 40 overlapping beams
Beginning of main ORCHID simulation and RT
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TC5284




SSD reduces time-averaged laser nonuniformity
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Imprint amplitude can be reduced by applying SSD
smoothing technique (continued)
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« ORCHID simulations
For constant-intensity foot pulse (31) = 319,/t. /{t).

Example: CH foil, I =3 x 1013 W/cmZ laser pulse, t. =8 ps
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2-D SSD with the bandwidth ~1 THz gives
sufficient nonuniformity reduction
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ORCHID simulations

Mode spectrum at the and RT analytic modeling

beginning of main drive with 3-D saturation
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Summary/Conclusions
An analytical model is developed to gain

physical insight of the laser imprint
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* Laser nonuniformities imprint surface modulations
that degrade the symmetry of implosion.

 An analytical model has been developed to determine
the physical processes contributing to imprint.
— Hydrodynamic flow is the main imprinting mechanism.

— Thermal smoothing and the dynamic overpressure
are the main processes reducing the imprint.

e Laser imprint, with 1-THz SSD beam smoothing, will not
significantly degrade cryogenic target performance.
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