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A simulation-driven approach is used to infer hot spot and shell nonuniformities by 
matching experimental observables

Summary

• A 3-D plasma model is derived to reconstruct 3-D ion temperature, pressure and mass-density profiles. Good 
agreements were obtained in synthetic x-ray and knock-on deuteron image reconstructions.


• A deceleration-phase simulation strategy is developed to reconstruct a limited set of experimental 
observables based on optimizing 1-D and 3-D initial conditions at the beginning of the deceleration phase.


• A sine-squared variation in apparent ion temperatures is simulated for a strongly perturbed mode 2 
interacting with a mode 1. This experimental signature indicates the impact of mode 2 in ICF implosions.
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A 3-D reconstruction platform has been developed to infer hot-spot conditions and shell 
nonuniformities in ICF implosion experiments

A 3-D dynamic model to 
reconstruct experimental 

observables.


Uses DEC3D simulations 
with an ad hoc 3-D velocity 
field and 1-D corrections to 

start the deceleration phase. 
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A 3-D static core model (SM) to 
reconstruct x-ray and nuclear data.
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A simple functional form of temperature and pressure profiles is well suited to accurately 
reproduce 1-D simulated core profiles

Ti ≈ TSH + THS ⋅ Exp [−(r /R′￼HS)2 − (r /RHS)16]

Capture the “sharp” boundaryCapture the “peak” core profile

1-D static core model

1-D static  reconstruction

Pi ≈ PHS ⋅ Exp [−(r /R′￼SH)2 − (r /RSH)16]
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A simplified 3-D static core model with 13 fitting parameters is shown able to reconstruct 
mode 1’s ion-temperature and mass-density profiles

3-D static core model

r → ⃗r(θ, ϕ) = ⃗R 0 + ⃗R [1 +
∞

∑
ℓ=1

ℓ
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The 3-D hot-spot and shell static model reconstruction for modes 1 and 2 agree well with 
DEC3D simulations within about <6% fitting errors
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The 3-D static core model reconstruction for the hot spot and shell is in good agreement 
with synthetic x-ray* and knock-on deuteron images**

DEC3D
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Mode ℓ = 1 Mode ℓ = 2

* J. J. MacFarlane et al., High Energy Density Physics 3, 181-190 (2007).

** F. Weilacher et al., Phys. Plasmas 25, 042704 (2018).
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Sequential color maps need to be considered 
to avoid misleading visual perception.
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Q1D + δQ1D

Gradient descent optimization for

deceleration-phase initial conditions

DEC3D Spect3D

IRIS3D

Mapping

Experimental

observable

The dynamic model imposes corrections to 1-D initial profiles and an ad hoc 3-D initial 
velocity perturbation in reconstructing a limited set of experimental observables
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The optimized DEC3D simulation
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Experiment 1.2 214 5.21 3.05 3.9 3.23 2.92 67 2.506 - - -
Simulation 1.00 232 4.01 2.49 3.06 3.26 2.49 61.6 2.572 37.8 2.48 2.66

Experimental error 0.0837 22 0.36 0.21 0.27 0.23 0.20 5 0.05 - - -

The DEC3D deceleration-phase simulation strategy is shown to reproduce experimental 
data within <10 iterations

3-D dynamic reconstruction
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The presence of a strong mode 2 causes decoupling of the Ti asymmetries from  
asymmetries distribution
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A simulation-driven approach is used to infer hot spot and shell nonuniformities by 
matching experimental observables

• A 3-D plasma model is derived to reconstruct 3-D ion temperature, pressure and mass-density profiles. Good 
agreements were obtained in synthetic x-ray and knock-on deuteron image reconstructions.


• A deceleration-phase simulation strategy is developed to reconstruct a limited set of experimental 
observables based on optimizing 1-D and 3-D initial conditions at the beginning of the deceleration phase.


• A sine-squared variation in apparent ion temperatures is simulated for a strongly perturbed mode 2 
interacting with a mode 1. This experimental signature indicates the impact of mode 2 in ICF implosions.

Summary / Conclusions


