Using parameter scans to quantify, optimize, and extrapolate performance
metrics for cryogenic implosions at OMEGA
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Multiple cryo campaigns have identified and refined the features in data
that need to be captured by statistical models’? and simulations
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Yexp ~ Y1 -D Yocbeam(Rb/Rt) Yochydro(lFAR) Yocresidual(scale)

exp

YOC,..n: Fusion yields rise quickly at R,/R, ~ 0.7 to 0.8, then slow at R, /R;~ 1
YOC,,4o: Y and pR decrease relative to expectations at high IFAR, then appear to asymptote

YOC,..iquai - Target size is a factor in performance at OMEGA, and could play a role in extrapolation
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Statistical methods are used to study mechanisms in physics,

evaluate tradeoffs in target design, and correct for sources of variance'-2
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~ Y1 -D Yocbeam(Rb/Rt) Yochydro(lFAR) Yocresidual(scale)

Two additional terms are very well-established
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Predictive formula are impacted by several sources of uncertainty
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Yexp ~ Y1 -D Yocbeam(Rb/Rt) Yochydro(lFAR) Yocresidual(scale)
Assume a power law expansion: Y., 0~ Y0 (R/R)N (IFAR)N? (Scale)N3
Solve for ‘minor term’ like Scale: N3 |og(Scale) + |og(C) ~ Iog(Yepr Y1-D)
+AYeyp Measurement errors
+AY,p Details in simulation, e.g. pulse-shaping

May be unknown, and exceed experimental errors

+ A(N1log(R,/R;)) Other terms, unintended correlations
+ A(N2 log(IFAR)) Again, can be >> experimental errors

In the data that follows, most of these issues are reduced (or avoided) by design




Single-variable studies were performed over a wide parameter space, all of which
are related to experiment 90288, which is a common standard candle
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1. Yocbeam(Rb/Rt)

IFAR and Scale ~ Constant
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3. YOCresiduaI(Scale)

R,/R; and IFAR ~ Constant

Euler-scaled version of 90288
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Neutron yield is a strong function of beam-to-target radius, R, /R,
and high-mode imperfections in the laser and target
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All yields are normalized by 1-D calculations in LILAC? Cold shell and hot spot at stagnation

Y/Y. 1-D Yc)Cbeam
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Simulations in DRACO? may not include or fully resolve all degradations, but match trends in data
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Y and pR decrease with IFAR and measures of stability,
then level off at or near a critical in-flight-aspect-ratio’
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Is it plausible for instabilities to grow until
they relax 1-D gradients, and saturate or
limit further degradations?




Results vs Scale indicate a weak dependence on target size
— and make sense, if implosion quality is a function of flaws and hydro
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All yields are normalized by 1-D calculations in LILAC?

Y/Y1 -D Yc)Cresidual
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Can only be inferred by eliminating
uncertainties associated with R/R; and
IFAR, and doing a large number of
experiments at widely separated scales.
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Scale=0.8 Scale=1.0

Calculations in DRACO including nominal levels of
imprint, capsule roughness, errors in laser pointing,
and a target offset (56 um). Both are similar, but not
self-similar (vs scale). Real experiments are also
subject to dust and debris, and the target stalk.

Impacts are small at OMEGA, but could be significant for large extrapolations
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Current and upcoming experiments will probe the same sensitivities
at lower adiabat (below: new data on R /R,)
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Implosions with pulse shape 90288 and a DT adiabat ~ 5

Yield and pR are normalized by 1-D calculations in LILAC Implosions with pulse shape 98541 and a DT adiabat ~ 3
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Additional data will improve statistical significance, and help guide future models
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Experiments designed for next year will revisit high IFAR, again,
but in a regime that could achieve high yields and areal densities
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1. Start with stat formula for 90288-like experiments in Y and pR Projection at R,/R; = 0.9 and Scale = 0.9

Yocbeam(Rb/Rt) Rocbeam(Rb/Rt)
YOC,, 40(/IFAR) ROC,,,4ro(/FAR) Relative |
YOC,....(Scale) ROC__...(Scale) elative laser py

1.8+

2. Build a database of 1-D calculations and re-tune 1.6
R,/R, = 0.47:0.05:1.07 " x=14
Relative abl thickness = 0.5:0.05:1.5
Relative ice thickness = 0.5:0.05:1.5 1.24 X= 1°A/ T
Relative laser power = 1.0:0.05:2.0 ol . pha-heating metric
Relative size = 0.8:0.1:4.0 08 |
B 1.2 0.8
3. Combine to predict plausible 90288-like experiments Relative abl thickness Relative ice thickness

Same tools suggest the energy to ignite could be smaller than currently appreciated, ~ 2x
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Multiple cryo campaigns have identified and refined the features in data
that need to be captured by statistical models’? and simulations
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Yexp ~ Y1 -D Yocbeam(Rb/Rt) Yochydro(lFAR) Yocresidual(scale)

exp

YOC,..n: Fusion yields rise quickly at R,/R, ~ 0.7 to 0.8, then slow at R, /R;~ 1
YOC,,4o: Y and pR decrease relative to expectations at high IFAR, then appear to asymptote

YOC,..iquai - Target size is a factor in performance at OMEGA, and could play a role in extrapolation
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