Equation of State and Metallization of Methane Shock-Compressed to 400 GPa

Conductivity of Shocked CH₄

64th Annual Meeting of the **American Physical Society Division of Plasma Physics** Spokane, Washington 17-21 October, 2022

UR LLE

G. Tabak University of Rochester Laboratory for Laser Energetics

We present Hugoniot EOS and conductivity data on methane to 400 GPa

- Methane is a major constituent of icy giant planets; its high-pressure behavior is important to evolutionary models
- Methane samples were precompressed in diamond-anvil cells to a range of initial densities (0.4-0.6 g/cc) and then shocked using the OMEGA^{*} and GEKKO XII^{**} laser facilities
- The compressibility of shocked methane changes at ~50-100 GPa
- We observed an insulator-conductor transition at the same conditions

 ^{*} Laboratory for Laser Energetics, University of Rochester, Rochester, NY
** Osaka University, Osaka, Japan

Coauthors

G. TABAK,^{1,2} M. A. MILLOT,³ S. HAMEL,³ T. OGAWA,⁵ P. M. CELLIERS,³ D. E. FRATANDUONO,³ A. LAZICKI,³ D. SWIFT,³ S. BRYGOO,⁴ P. LOUBEYRE,⁴ T. R. BOEHLY,¹ N. DASENBROCK-GAMMON,² R. DIAS,² L. CRANDALL,^{1,2} B. HENDERSON,^{1,2} M. ZAGHOO,¹ S. ALI,³ R. KODAMA,⁵ K. MIYANISHI,⁵ N. OZAKI,⁵ T. SANO,⁵ R. JEANLOZ,⁶ D. G. HICKS,⁷ G. W. COLLINS,^{1,2} J. H. EGGERT,³

and J. R. RYGG^{1,2}

¹Laboratory for Laser Energetics

²University of Rochester

³Lawrence Livermore National Laboratory

⁴Commissariat a l'energie atomique et aux énergies alternatives (CEA)

⁵University of Osaka

⁶University of California, Berkeley

⁷Swinburne University of Technology

KOCHESTER

Methane samples were precompressed in diamond-anvil cells (DAC's) and shocked at the OMEGA and GEKKO XII laser facilities

- CH4 was precompressed to 0.3-1 GPa, corresponding to initial densities of 0.4-0.6 g/cc
- Shock velocity, reflectivity, and self-emission were measured using the velocity interferometer system for any reflector (VISAR*) and streak optical pyrometry (SOP**)
- Quartz was used as a material standard for the Hugoniot and temperature measurements

LLE

Velocity Interferometry System for Any Reflector

VISAR and SOP simultaneously measured the shock velocity and self-emission of the target, respectively

- EOS is derived from shock velocities in quartz and methane via impedance matching
- Methane self-emission is referenced to quartz for temperature measurements
- VISAR fringe amplitude provides the reflectivity (referenced to quartz) and this is used to model both quartz and methane as a gray-body

UR

Velocity Interferometry System for Any Reflector

^{**} Streak Optical Pyrometry

The impedance-matching method relies on the shock and release behaviors of a known standard

Rankine–Hugoniot equations

 $\frac{\rho}{\rho_0} = \frac{U_s}{U_s - U_p}$

$$P - P_0 = \rho_0 U_{\rm s} U_{\rm p}$$

$$E - E_0 = \frac{1}{2}(P + P_0)\left(\frac{1}{\rho_0} - \frac{1}{\rho}\right)$$

The impedance-matching method relies on the shock and release behaviors of a known standard

Rankine–Hugoniot equations

 $\frac{\rho}{\rho_0} = \frac{U_{\rm s}}{U_{\rm s} - U_{\rm p}}$

$$P - P_0 = \rho_0 U_{\rm s} U_{\rm p}$$

$$E - E_0 = \frac{1}{2}(P + P_0)\left(\frac{1}{\rho_0} - \frac{1}{\rho}\right)$$

Equation-of-state data are obtained from the impedance-matching technique

S. Brygoo et al., J. Appl. Phys. <u>118</u>, 195901 (2015). M. Knudson et al., Phys. Rev. B 88, 184107 (2013).

UR LLE

Equation-of-state data are obtained from the impedance-matching technique

S. Brygoo et al., J. Appl. Phys. <u>118</u>, 195901 (2015). M. Knudson et al., Phys. Rev. B 88, 184107 (2013).

Equation-of-state data are obtained from the impedance-matching technique

S. Brygoo *et al.*, J. Appl. Phys. <u>118</u>, 195901 (2015). M. Knudson *et al.*, Phys. Rev. B <u>88</u>, 184107 (2013).

UR LLE

The shock and particle velocities show a change in slope at high pressures

• Change in slope at $U_{\rm s}$ ~15 km/s suggests a microscopic change in methane

UR

^{*} B. L. Sherman et al., Phys. Rev. B 86, 224113 (2012).

^{**} W. J. Nellis et al., J. Chem. Phys. 75, 3055 (1981).

Pressure and temperature data reveal the compressibility and thermal response of shocked methane

Methane compression saturates at roughly ~100 GPa

B. L. Sherman et al., Phys. Rev. B 86, 224113 (2012).

** W. J. Nellis et al., J. Chem. Phys. 75, 3055 (1981).

⁺ M. Ross, Nature 292, <u>435</u> (1981).

At the pressures where the compressibility changed we also observe a saturation in reflectivity

Reflectivity versus Pressure in Shocked CH₄

LLE

At the pressures where the compressibility changed we also observe a saturation in reflectivity

Reflectivity versus Pressure in Shocked CH₄

Conductivity of Shocked CH₄

• There is an insulator-conductor transition at ~50-100 GPa

Hydrogen and CH compounds experience reflectivity onset at roughly the same temperatures

Reflectivity vs. Temperature in CH Materials

The conductivity onset in CH materials appears to be temperature activated

* S. Brygoo et al., J. Appl. Phys. <u>118</u>, 195901 (2015).

- ** M. Barrios et al., Physics of Plasmas 17, 056307 (2010).
- *** J. Eggert et al., Nature Physics 6, 40-43 (2010).

We present Hugoniot EOS and conductivity data on methane to 400 GPa

- Methane is a major constituent of icy giant planets; its high-pressure behavior is important to evolutionary models
- Methane samples were precompressed in diamond-anvil cells to a range of initial densities (0.4-0.6 g/cc) and then shocked using the OMEGA^{*} and GEKKO XII^{**} laser facilities
- The compressibility of shocked methane changes at ~50-100 GPa
- We observed an insulator-conductor transition at the same conditions

^{*} Laboratory for Laser Energetics, University of Rochester, Rochester, NY ** Osaka University, Osaka, Japan