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Properties of Double Shocked CH to 18 MBar
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Multi-shock compression facilitates unique access to high density states
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* Double-shock states in CH were observed directly up to pressures of ~18 Mbar and densities of up to ~6.0 g/cc

* Preliminary optical pyrometry analyses show double shock states with temperatures 2 — 8 eV over a range of
pressures from 8 — 18 Mbar

« These double-shock states show consistently lower reflectivity and higher density than isobaric states on the CH principal
hugoniot

« While the reflectivity of our single shock states closely follows hydrogen for overlapping temperatures, the reflectivity of the

double-shock states falls between that observed in pure carbon (diamond) and hydrogen
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CH has several practical applications ranging from ICF to Planetary Modeling
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* Polystyrene is a synthetic polymer
and one of the most ubiquitous
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» Polystyrene’s 1:1 stoichiometric ratio
of C:H makes it a suitable proxy
material for studying planetary
interiors

* It is also important for ICF research

for its use in fusion capsules
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Barrios et al. Phys. Plasmas 17, 056307 (2010)
Kraus et al. Phys. Plasmas 23, 056313 (2018)




CH has several practical applications ranging from ICF to Planetary Modeling
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Intermediate drive
~150 GPa ~5,000 K  Polystyrene is a synthetic polymer
and one of the most ubiquitous

plastics

Diamond
(220) —

» Polystyrene’s 1:1 stoichiometric ratio
of C:H makes it a suitable proxy
material for studying planetary
interiors

* It is also important for ICF research
for its use in fusion capsules

High-pressure chemistry of hydrocarbons . Recent experiments showing

relevant to planetary interiors and inertial Diamond precipitation in CH has
. i important consequences for both ICF
confinement fusion and planetary modeling

Cite as: Phys. Plasmas 25, 056313 (2018); | 1063 /1.5017908 Kraus et al. Phys. Plasmas 23, 056313 (2018)
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Background

A variety of experimental paths enable exploration of a material’s phase space
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» The locus of states accessible by shocking a material is referred to as an Hugoniot




Background

A variety of experimental paths enable exploration of a material’s phase space
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» Multi-shock compression is a method for obtaining off-Hugoniot states




Background

A variety of experimental paths enable exploration of a material’s phase space
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e.g. Principal Hugoniot /

/ Double Shock
Single Shock

)
Increased density
access along an isobar
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» The locus of states accessible by shocking a material is referred to as an Hugoniot
» Multi-shock compression is a method for obtaining off-Hugoniot states

» A specific class of multi-shock compression, dynamic pre-compression (or double shock), is the focus of this work




Background

Double-shock state (P,,p,) is observed directly and determined by self-impedance
matching uR
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*1st shock

CH - Al
25 um 50 um

Guargaglini et al. Phys. Plasmas 26, 042704 (2019)
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Background

Double-shock state (P,,p,) is observed directly and determined by self-impedance
matching uR
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Background

Double-shock state (P,,p,) is observed directly and determined by self-impedance

matching
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Conservation relations are used
to obtain pressure and density
from primary observables
Up,1,Us, (second shock velocity),
U,. (merger/coalescence
velocity)




Double-shock state (P,,p,) is observed directly and determined by self-impedance
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Temperature of double-shock and merger states is measured using optical
pyrometry
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Some double shock states show greater compression than predicted by existing
models

UR

30

25 A

20 A

15 A

10 A

LLE

This work ( merged shock)

Previous work (Principal
Hugoniot Measurements)

This work

( double-shock)

« The measured double shock states vary
from showing good agreement to being
measured at ~14% denser than the
FPEOS** predicted locus of double
shock states

» This predicted range fell between (14.4
GPa,1.72 g/cm3) < P,,p, < (20.8
GPa,2.34 g/cm3), for the first shock state
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Temperatures of double-shock states exhibit the same general behavior as their
corresponding hugoniot states, albeit at significantly cooler
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» In fact, the temperature of the double shock states were consistently 50-60% cooler than the subsequent merger
(hugoniot) shock states

» These temperatures for the double shock fell between ~25 kK — 75 kK
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Temperatures of double-shock states exhibit the same general behavior as their
corresponding hugoniot states, albeit at significantly cooler

UR
200000 LLE
175000 A 50000 )
150000 - o)
// 40000 -
125000 - <
o ¢
Hu et al. Z 30000-
100000 - FPEOS ) 5
4 5
o
75000 - \ 5 20000 -
o :
50000 4 10000 ] R_eglon of CH .
""" K diamond formation
- Kraus et al.)
25000 - _ : : P ( :
%- ! Previous studies  This work 0 : - ; . .
. o (double-shock)  (double-shock) pressure [MBar]
0.0 2.5 5.0 7.5 100 125 150 175  20.0

Pressure [MBar]

The temperature of the double shock states were consistently 50-60% cooler than the subsequent merger (hugoniot)
shock states

We observe temperatures for the double shock states between ~25 kK — 75 kK




Reflectivity of states on the CH principal hugoniot saturate at ~40% while for double shock states

we observe reflectivity between ~30 — 40% UR
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Reflectivity of states on the CH principal hugoniot of saturate at ~40% while for double shock

states we observe reflectivity between ~30 — 40% UR
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Multi-shock compression facilitates unique access to high density states
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* Double-shock states in CH were observed directly up to pressures of ~18 Mbar and densities of up to ~6.0 g/cc

* Preliminary optical pyrometry analyses show double shock states with temperatures 2 — 8 eV over a range of
pressures from 8 — 18 Mbar

« These double-shock states show consistently lower reflectivity and higher density than isobaric states on the CH principal
hugoniot

« While the reflectivity of our single shock states closely follows hydrogen for overlapping temperatures, the reflectivity of the

double-shock states falls between that observed in pure carbon (diamond) and hydrogen
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Experimental Technique BACKUP SLIDE

The VISAR/SOP system is the principal diagnostic for HEDP shock experiments
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VISAR

Shot 43637

N « The VISAR diagnostic tracks changes in the velocity
=3 of reflective surfaces (free surfaces, interfaces, and
~E strong shocks)
22

« The SOP diagnostic measures the self-emission of
shock surfaces which allows us to measure
temperature

Velocity (km/s)

Intensity

Time (ns)

*Velocity interferometer for any reflector
**Streaked Optical Pyrometer
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Experimental Technique BACKUP SLIDE

Double-shock experiments require a carefully tailored sequence of two shocks

UR
km/s LLE
50 - ——asbo1

45 - o ——asbo?2
40 - o* eI

35 -
30 -

Velocity

10 -

A

__-"2nd Shock Breakout

/é
/ st Shock Breakout
to// VISAR Raw Data

> ARRRERRERERR R R RN AR RRRR R PR RR RIS,

Time

A "o i 25 _
! ~--"'Shock Coalescenc;e» E; -

\4

X

Typical laser pulses are pairs of ~1
ns square pulses separated by some
time t

Rygg 2010 - Unpublished

B& ROCHESTER

UNIVERSITY of




BACKUP SLIDE

A Hill Function was fit to existing Reflectivity Data for CH and used to calibrate the

VISAR intensity o
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» We obtain measurements for the reflectivity of the double and coalesced shocks by averaging the calibrated
VISAR signal in each respective region of interest
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Literature Comparison BACKUP SLIDE

The VISAR/SOP system is the principal diagnostic for HEDP shock experiments
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BACKUP SLIDE
The VISAR/SOP system is the principal diagnostic for HEDP shock experiments
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* VISAR (Velocity Interferometer
for Any Reflector) tracks

Toward SOP _ _SOP changes in the velocity of
reflective surfaces
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BACKUP SLIDE

Double-shock (P,,p,) state is determined by a self-impedance matching technique
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Conservation of Mass Conservation of Momentum ) * 1st shock breakout
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U
& = 51 P — p U U CH - Al VISAR
Po Usl — Up1 0~s1*p1 25 um 50 um 125 um . .
o  Conservation relations
2!

are used to obtain
pressure and density
from primary observables

U,1,Ug, (second shock
velocity), U,
(merger/coalescence
velocity)

Guargaglini et al. Phys. Plasmas 26, 042704 (2019)




BACKUP SLIDE

Double-shock (P,,p,) state is determined by a self-impedance matching technique
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velocity)
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BACKUP SLIDE

Double-shock (P,,p,) state is determined by a self-impedance matching technique
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BACKUP SLIDE

Double-shock (P,,p,) state is determined by a self-impedance matching technique
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Conservation of Mass Conservation of Momentum * 1st shock breakout
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Does the deviation from predicted off-Hugoniot (P,,p,) persist at lower pressures?
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