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Summary

Mid-Z Si layers and dopants provide a promising hot-electron
preheat mitigation strategy for direct-drive–ignition designs

• Implosion experiments were performed at the National Ignition Facility (NIF) to quantify
preheat levels and directly measure the spatial hot-electron energy deposition profile

• From 0.2% to 0.6% of the laser energy is coupled via hot electrons to the unablated shell for incident 
laser intensities from (0.75 to 1.25) × 1015 W/cm2, with half of the preheat coupled to the inner 80% of 
the unablated shell 

• Buried Si layers mitigate growth of laser–plasma instabilities (LPI’s), suppressing preheat or reducing 
it by a factor of ~2; hot-electron preheat is reduced by 30% using Si dopant at 1015 W/cm2

• Shell convergence significantly reduces hot-electron preheat late in the implosion

The present results show acceptable preheat levels for on-target 
intensities around 1015 W/cm2, for MJ-scale laser direct drive.
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Hot-electron preheat can degrade fuel compression 
in direct-drive–ignition designs

Motivation

____________
*J. A. Delettrez, T. J. B. Collins, and C. Ye, Phys. Plasmas 26, 062705 (2019).

• For efficient implosion and compression, the 
thermonuclear fuel should stay at a low adiabat,
which is defined as the ratio of the DT pressure
to the Fermi-degenerate pressure

• Preheat by suprathermal (hot) electrons generated by 
laser–plasma instabilities can increase the pressure, 
degrade the implosion, and prevent the ignition

• Fuel compression is negatively affected if more than 
~0.15% of laser energy is coupled into fuel preheat*
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____________
*M. Rosenberg et al., Phys. Rev. Lett. 120, 055001 (2018);
*A. Solodov et al., Phys. Plasmas 27, 052706 (2020).
FFLEX: filter-fluorescer x-ray diagnostic

Previous planar NIF experiments explored LPI and hot-electron
production at direct-drive ignition-relevant plasma conditions*

• Incident laser intensity is ~2× intensity at nc/4 at ignition-
relevant density scale length Ln ~ 600 𝝁𝝁m and Te ~ 3 to 5 keV 
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Hot-electron generation and preheat need to be studied at scale because LPI mechanisms 
depend on the plasma scale length and are different on the NIF and OMEGA.

____________
TPD: two-plasmon decay

Planar NIF LPI experiments established the predominance of SRS as a
hot-electron source at direct-drive ignition-relevant plasma conditions

____________
M. Rosenberg et al., Phys. Rev. Lett. 120, 055001 (2018).

____________
SRS: stimulated Raman scattering

NIF: Ln = 525 𝝁𝝁m
Te = 4.5 keV

OMEGA: Ln = 150 𝝁𝝁m
Te = 2.8 keV
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However, preheat in implosions depends not only on hot-electron production, 
but divergence and coupling to the inner portion of the shell

• If electron divergence is large, only ~25%
of electrons intersect the cold fuel

• Electrons below ~50 keV are stopped
in the ablator

• Hot-electron coupling to the inner portion of 
the shell is important, which is compressed 
at bang time by the return shock and ignites

Hot-electron energy deposition in the unablated shell needs to be characterized.
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Hot-electron preheat and mitigation using Si layers and dopant have
been studied in polar-direct-drive (PDD) experiments on the NIF*

• The experiments used ∼2.4-mm-diam capsules, chosen to match the size of the indirect-drive phase plates 
• Such capsules are only ∼30% smaller than the targets in the proposed ignition NIF PDD design**

____________
* A. A. Solodov et al., to be published in Phys. Rev. E.

** T. J. B. Collins et al., Phys. Plasmas 25, 072706 (2018).
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Hot-electron preheat in NIF PDD implosions was studied by comparing 
hard x-ray emission between plastic and multilayered implosions*

Different thicknesses of the Ge-doped layer were examined to 
diagnose the hot-electron deposition profile in the imploding shell.

Mass-equivalent targets

• Hot-electron energy deposited in the inner shell layer is proportional to the 
difference in hard x-ray (HXR) emission between CH and multilayered implosions*

____________
*Platform based on A. Christopherson et al., Phys. Rev. Lett. 127, 055001 (2021).
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Time-resolved scattered-light spectra indicate that LPI is dominated by
SRS and is similar between the all-CH and Ge-doped payload implosions

____________
FABS: full-aperture backscatter station

Similar LPI → similar hot-electron energy source
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Hot-electron preheat was inferred by comparing the measured HXR spectra to 
simulations using the hydrocode LILAC* and the Monte Carlo code Geant4**

____________
* J. Delettrez et al., Phys. Rev. A 36, 3926 (1987).

** J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016).

• Hot-electron temperature, total energy, divergence angle, and 
refluxing fraction were varied to reproduce the measured HXR spectra

• The hot-electron divergence half-angle is found to exceed 45°, 
the angular size of the cold shell from the nc/4 surface
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The hot-electron energy deposition profile was
inferred from Geant4 Monte Carlo simulations

• Red circles: energy deposition in the Ge-doped layer in multilayered targets

Incident intensity = 1015 W/cm2

About half of the preheat (~0.2% of Elaser) is deposited in the inner 80% of the unablated shell.
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Si layers strategically placed in the ablator were
found to mitigate LPI and hot-electron preheat 

____________
J. R. Fein et al., Phys. Plasmas 24, 032707 (2017);
J. F. Myatt et al., Phys. Plasmas 20, 052705 (2013).

• SRS is mitigated* in Si by
－ shortening the density scale length at nc/4 from ∼420 𝝁𝝁m to ∼340 𝝁𝝁m according to hydro simulations
－ increasing the electron–ion collisionality 𝝂𝝂𝐞𝐞𝐞𝐞 ∝ 𝒁𝒁𝐞𝐞𝐞𝐞𝐞𝐞 = ⁄𝒁𝒁2 𝒁𝒁 , which enhances absorption of the incident and scattered 

light and damps electron plasma waves
____________
*C. S. Liu, M. N. Rosenbluth, and R. B. White, Phys. Fluids 17, 1211 (1974);
R. E. Turner et al., Phys. Rev. Lett. 54, 189 (1985); 1878(E);
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Hot-electron preheat is reduced by ~2× with a
Si layer at an incident intensity of 1015 W/cm2

About half of the preheat is deposited in the inner 80% of the unablated shell.

Incident intensity = 1015 W/cm2 Incident intensity = 1015 W/cm2
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Although a mid-Z Si layer reduces hot-electron preheat,
its effect on implosion hydrodynamics must be considered*

Beneficial effects: 
− increases laser inverse bremsstrahlung 

absorption
− reduces cross-beam energy transfer
Negative effects:
− lowers hydrodynamic efficiency
− increases radiation losses and radiation preheat
− can be unstable, although Si expansion

by absorbed coronal radiation helps to
mitigate the Rayleigh–Taylor instability

Conclusion:
− keep the mid-Z layer thin and place it inside the 

lower-Z material to combine the higher laser 
absorption with the larger ablation efficiency
of the innermost layer in the ablator

____________
*V. N. Goncharov et al., Phys. Plasmas 21, 056315 (2014) and references therein.

• Si-doped plastic ablators combine the 
beneficial properties of the mid-Z
material with useful imprint reduction 
and better hydrodynamic stability 
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Hot-electron preheat scaling with the incident laser intensity has
been obtained with and without mitigation using a Si layer or dopant

____________
*J. A. Delettrez, T. J. B. Collins, and C. Ye, Phys. Plasmas 26, 062705 (2019).

~0.15% of the laser energy is an acceptable preheat fraction for high-gain ignition designs*

About half of the preheat is deposited 
in the inner 80% of the unablated shell:
• 0.1% to 0.15% of EL at I ~ (1 to 1.25) × 1015

W/cm2 with a Si layer
• 0.14% of EL at I = 1015 W/cm2 with Si dopant

Si layers and dopants provide a promising preheat mitigation strategy 
for ignition designs at an on-target intensity of about 1015 W/cm2.

Hot-electron energy deposition in an unablated shell
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The effect of shell convergence on preheat has been 
studied by increasing the laser pulse duration

Shell convergence at the end of
the extended pulse is ~2× higher
than in the early part of the pulse.

____________
*CR: Shell convergence ratio, Rshell(t=0)/Rshell(t)
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Hot-electron preheat decreases as the shell converges

• Energy deposition in the Ge-doped layer decreases as the solid 
angle of the dense shell from the nc/4 surface: by a factor of ~4 
during the last 1.3 ns of the 3.5-ns flattop pulse

Inferred hot-electron energy deposition: 
total and in the Ge-doped layer

Shell convergence can decrease preheat in high-gain ignition cryo designs*
in which convergence of 2 to 4 at peak hot-electron production is expected.

____________
*T. J. B. Collins et al., Phys. Plasmas 25, 072706 (2018).
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Hot-electron preheat in 3-mm-diam ignition-scale
PDD implosions on the NIF has been accessed*

Parameter
NIF

3-mm-
diam

NIF
2.4-mm-

diam
EL 1320 kJ 720 kJ

PL 279 TW 172 TW

IL (W/cm2)** 1.0 × 1015 1.0 × 1015

Pulse length 8.8 ns 6.9 ns

Capsule OD 3020 𝜇𝜇m 2360 𝜇𝜇m

Capsule
thickness 150 𝜇𝜇m 120 𝜇𝜇m

____________
* M. J. Rosenberg et al., CO04.00013, this conference.

** Average on-target laser intensity
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Full scale (3-mm) NIF experiments show a factor of ~2 more preheat energy 
deposited in the unablated shell than subscale (2.3-mm) experiments

Caveat: the full-scale pulse shape is not exactly hydrodynamically scaled
- implosion convergence is lower when hot electrons are generated: a hydro-scaled pulse would have lower preheat by up to ~27%
- Elaser lower than pure hydro scale, so a hydro-scaled pulse would have lower fhot = Ehot/Elaser by definition, by ~13%

Hydro-scaled 3-mm NIF implosions would show ~30% to 50% more preheat than 2.3-mm experiments.
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Preheat levels in ignition-scale cryogenic implosions are estimated for
1015 W/cm2 on-target intensity based on existing spherical and planar data

Multiplier Preheat (% of laser)

Preheat into inner 80% of unablated shell 
in warm subscale NIF implosion - ~0.2%

Increase scale length to full scale* ~1.5 to 2.0

Increase convergence ratio at end of pulse ~0.4 to 0.8

DT shell and some DT in ablator ~1.0 to 1.8

Improve beam smoothing ~0.8

Si layer ~0.5

Total ~0.5 to 1.0 ~0.1% to 0.2%

~0.15% is an acceptable preheat fraction for ignition designs**
→ Intensities around 1015 W/cm2 produce acceptable preheat for ignition designs 

____________
* An upper limit for preheat increase by ~2× is established based on the NIF planar experiments at
* an ignition-relevant density scale length for a similar number of overlapped laser beams (15 to 30).
** J. A. Delettrez, T. J. B. Collins, and C. Ye, Phys. Plasmas 26, 062705 (2019).
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Summary/Conclusions

Mid-Z Si layers and dopants provide a promising hot-electron
preheat mitigation strategy for direct-drive–ignition designs

• Implosion experiments were performed at the National Ignition Facility (NIF) to quantify
preheat levels and directly measure the spatial hot-electron energy deposition profile

• From 0.2% to 0.6% of the laser energy is coupled via hot electrons to the unablated shell for incident 
laser intensities from (0.75 to 1.25) × 1015 W/cm2, with half of the preheat coupled to the inner 80% of 
the unablated shell 

• Buried Si layers mitigate growth of laser–plasma instabilities (LPI’s), suppressing preheat or reducing 
it by a factor of ~2; hot-electron preheat is reduced by 30% using Si dopant at 1015 W/cm2

• Shell convergence significantly reduces hot-electron preheat late in the implosion

The present results show acceptable preheat levels for on-target 
intensities around 1015 W/cm2, for MJ-scale laser direct drive.
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