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Summary

Self-emission measurements of OMEGA 60 spherical implosion experiments 
constrain transport properties at Gbar pressures

• Convergent high energy density (HED) experiments are able to assemble materials to Gbar 
pressures.

• The measured self-emission from these experiments strongly depends on energy transport 
quantities such as the opacity of the shell and the thermal conductivity of the hotspot.

• A semi-analytic model in a Bayesian inference framework is used to perform a synthetic study to 
understand the sensitivity of the measured emission to the underlying transport.
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Implosion experiments access some of the most extreme states of matter 
achievable in a laboratory setting.

• The Gbar conditions reached in implosion 
experiments are relevant to solar interiors, fusion 
plasmas, etc.

• Material properties are not well-known at Gbar 
conditions**, which makes characterizing these 
extreme states challenging

• Much effort has gone into diagnostic development 
for implosion experiments for ICF applications

____________
* P.K. Patel, et. al. Phys. Plasmas 27 (2020).

** J.E. Bailey, et. al. Nature 517 (2015).
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In OMEGA-60 convergent HED experiments, a gas-filled plastic capsule is directly 
driven by 60 beams in a spherical geometry, causing it to implode. 

Self emission carries information about the transport 
properties of the hotspot and the dense shell
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Self-emission data was obtained for deuterium-filled 30 µm thick plastic shell 
implosions on the OMEGA 60 laser system. 

Datasets from implosion experiments are 
highly-integrated but information-rich 
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A parameterized model in a Bayesian inference framework can be used to 
constrain the underlying states and rigorously quantify uncertainties.*

____________
* J.J. Ruby et. al. Phys Rev E, 102(5):53210 (2020).
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A simplified picture of the system can be constructed by dividing the system into 
three regions wherein a different energy transport mechanism dominates 

• The system is governed by a set of 
computationally-expensive coupled PDEs:

• The system can be broken into three 
regions*:
－ Hot spot 𝟎𝟎 < 𝒓𝒓 < 𝑹𝑹𝒉𝒉
－ Shocked shell 𝑹𝑹𝒉𝒉 < 𝒓𝒓 < 𝑹𝑹𝒔𝒔
－ “Free-fall” shell* 𝒓𝒓 > 𝑹𝑹𝒔𝒔

• In each region, the PDEs can be simplified 
under some assumptions

____________
* R. Betti, et. al. Phys. Plasmas 9, 2277 (2002).

i. 𝝏𝝏𝝆𝝆
𝝏𝝏𝝏𝝏

+ 𝛁𝛁 ⋅ 𝝆𝝆𝒖𝒖 = 𝟎𝟎

ii. 𝝏𝝏𝝆𝝆𝒖𝒖
𝝏𝝏𝝏𝝏

+ 𝛁𝛁 ⋅ 𝝆𝝆𝒖𝒖 + 𝛁𝛁𝒑𝒑 = 𝟎𝟎

iii. 𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏

+ 𝛁𝛁 ⋅ 𝒖𝒖 ⋅ 𝝏𝝏 + 𝒑𝒑 = 𝑺𝑺
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A semi-analytic, parameterized model that reproduces the full hydrodynamics 
calculation can be derived using this simplified picture

• The PDES can be simplified into a system of 5 ODEs 
with 12 parameters* ** †

The reduced model emphasizes the flow of 
energy between regions.

____________
* R. Betti, et. al. Phys. Plasmas 9, 2277 (2002).

** J. Sanz, et. al. Phys. Plasmas 12, 112702 (2005).
† A.R. Christopherson, et. al. Phys. Plasmas 25, 012703 (2018).

1. 𝒅𝒅
𝒅𝒅𝝏𝝏

𝒑𝒑𝑹𝑹𝒉𝒉
𝟑𝟑𝜸𝜸𝑫𝑫𝟐𝟐 = 𝟎𝟎 Adiabatic compression

2. 𝒅𝒅
𝒅𝒅𝝏𝝏

𝒑𝒑𝑹𝑹𝒉𝒉
𝟑𝟑

𝑻𝑻
= 𝜿𝜿𝟎𝟎𝑹𝑹𝒉𝒉𝑻𝑻𝜶𝜶 Energy conservation 

3. 𝒅𝒅𝑴𝑴𝒔𝒔𝒔𝒔
𝒅𝒅𝝏𝝏

= 𝑴𝑴𝒊𝒊𝒏𝒏 −𝑴𝑴𝒐𝒐𝒖𝒖𝝏𝝏 Mass conservation

4. 𝒅𝒅(𝑴𝑴𝒔𝒔𝒔𝒔⟨𝑼𝑼𝒔𝒔𝒔𝒔⟩)
𝒅𝒅𝝏𝝏

= 𝚺𝚺𝐅𝐅𝐬𝐬𝐬𝐬 Momentum conservation

5. 𝒅𝒅𝑹𝑹𝒔𝒔
𝒅𝒅𝝏𝝏

= −𝜸𝜸𝑪𝑪𝑯𝑯−𝟏𝟏
𝟐𝟐

𝒖𝒖𝒇𝒇𝒇𝒇 + 𝜸𝜸𝑪𝑪𝑯𝑯+𝟏𝟏
𝟐𝟐

𝑼𝑼𝒔𝒔𝒔𝒔|𝑹𝑹𝒔𝒔 Rankine-Hugoniot

6. 𝑼𝑼𝒔𝒔𝒔𝒔 = 𝒇𝒇 𝑹𝑹𝒉𝒉, ̇𝑹𝑹𝒉𝒉,𝑹𝑹𝒔𝒔, ̇𝑹𝑹𝒔𝒔, … Closure relation
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The parameterized model can be used to generate synthetic self-emission data  

• The spectral radiance is calculated by solving the 
equation of radiative transfer:

𝛀𝛀 ⋅ 𝛁𝛁𝑰𝑰𝒉𝒉 = 𝝆𝝆𝜿𝜿𝒉𝒉′ 𝑻𝑻,𝝆𝝆 𝑺𝑺𝒉𝒉 𝑻𝑻,𝝆𝝆 − 𝑰𝑰𝒉𝒉

• Neutron emission is computed from the reaction 
rate:

𝒅𝒅𝒅𝒅
𝒅𝒅𝝏𝝏

=
𝝆𝝆𝟐𝟐

𝟐𝟐𝒎𝒎𝑫𝑫
�
𝟎𝟎

∞
𝝈𝝈𝒗𝒗𝒇𝒇 𝒗𝒗 𝒅𝒅𝒗𝒗

• The emission is fed through realistic detector 
responses to generate a synthetic dataset

We conduct synthetic study using data 
generated from LILAC to understand 
sensitivities to transport quantities

____________
*T. Hilsabeck, PYRIMADS PYthon Radiation IMaging And Detection Simulation, Prompt 
Radiation Detection and Imaging Workshop (2022) LLNL-PRES-829846
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Synthetic Data
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The reduced model and Bayesian inference is able to reproduce the synthetic 
data from LILAC.

Neutron Time History Framing Camera Lineout X-ray Time History

The data is well-explained by the simplified model
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The reduced model and synthetic data constrain key transport quantities of the 
system.

𝑬𝑬𝒄𝒄𝒐𝒐𝒏𝒏 = −𝟒𝟒𝟒𝟒𝑹𝑹𝟐𝟐𝜿𝜿 𝑻𝑻
𝒅𝒅𝑻𝑻
𝒅𝒅𝒓𝒓

𝜿𝜿𝒉𝒉𝝆𝝆𝑹𝑹 = �𝜿𝜿𝒉𝒉𝝆𝝆 𝒅𝒅𝒓𝒓

𝒉𝒉𝒉𝒉 = 𝟓𝟓 𝒌𝒌𝒌𝒌𝒌𝒌
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Self-emission measurements of CH shell implosions are sensitive to 
energy transport properties at Gbar conditions



13

Summary

Self-emission measurements of OMEGA 60 spherical implosion experiments 
constrain transport properties at Gbar pressures

• Convergent high energy density (HED) experiments are able to assemble materials to 
Gbar pressures.

• The measured self-emission from these experiments strongly depends on energy 
transport quantities such as the opacity of the shell and the thermal conductivity of 
the hotspot.

• A semi-analytic model in a Bayesian inference framework is used to perform a 
synthetic study to understand the sensitivity of the measured emission to the 
underlying transport.

Self-emission measurements of CH shell implosions are sensitive to 
energy transport properties at Gbar conditions
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