Constraining Energy Transport in Compressive Implosions

Ethan Smith University of Rochester Laboratory for Laser Energetics 64th Annual Meeting, Division of Plasma Physics Spokane, Washington October 20th 2022

Summary

Self-emission measurements of OMEGA 60 spherical implosion experiments constrain transport properties at Gbar pressures

- Convergent high energy density (HED) experiments are able to assemble materials to Gbar pressures.
- The measured self-emission from these experiments strongly depends on energy transport quantities such as the opacity of the shell and the thermal conductivity of the hotspot.
- A semi-analytic model in a Bayesian inference framework is used to perform a synthetic study to understand the sensitivity of the measured emission to the underlying transport.

Collaborators

D.T. Bishel, D.A. Chin, C.A. Williams, C.J. Forrest, V.Yu. Glebov, N.V. Kabadi, J.R. Rygg, and G.W. Collins

> University of Rochester Laboratory for Laser Energetics

> > J.J. Ruby

Lawrence Livermore National Lab

Implosion experiments access some of the most extreme states of matter achievable in a laboratory setting.

- The Gbar conditions reached in implosion experiments are relevant to solar interiors, fusion plasmas, etc.
- Material properties are not well-known at Gbar conditions**, which makes characterizing these extreme states challenging
- Much effort has gone into diagnostic development for implosion experiments for ICF applications

In OMEGA-60 convergent HED experiments, a gas-filled plastic capsule is directly driven by 60 beams in a spherical geometry, causing it to implode.

Self emission carries information about the transport properties of the hotspot and the dense shell

Self-emission data was obtained for deuterium-filled 30 µm thick plastic shell implosions on the OMEGA 60 laser system.

Datasets from implosion experiments are highly-integrated but information-rich

A parameterized model in a Bayesian inference framework can be used to constrain the underlying states and rigorously quantify uncertainties.*

We need to develop a parameterized model of the system

ROCHESTER

* J.J. Ruby et. al. Phys Rev E, 102(5):53210 (2020).

A simplified picture of the system can be constructed by dividing the system into three regions wherein a different energy transport mechanism dominates

• The system is governed by a set of computationally-expensive coupled PDEs:

i. $\frac{\partial \rho}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) = \mathbf{0}$ *ii.* $\frac{\partial \rho \vec{u}}{\partial t} + \vec{\nabla} \cdot (\rho \vec{u}) + \vec{\nabla} p = \mathbf{0}$ *iii.* $\frac{\partial \epsilon}{\partial t} + \vec{\nabla} \cdot (\vec{u} \cdot (\epsilon + p)) = S$

- The system can be broken into three regions*:
 - Hot spot $0 < r < R_h$
 - Shocked shell $R_h < r < R_s$
 - "Free-fall" shell* $r > R_s$
- In each region, the PDEs can be simplified under some assumptions

^{*} R. Betti, et. al. Phys. Plasmas 9, 2277 (2002).

A semi-analytic, parameterized model that reproduces the full hydrodynamics calculation can be derived using this simplified picture

** J. Sanz, et. al. *Phys. Plasmas* 12, 112702 (2005). [†] A.R. Christopherson, et. al. *Phys. Plasmas* 25, 012703 (2018).

The parameterized model can be used to generate synthetic self-emission data

• The spectral radiance is calculated by solving the equation of radiative transfer:

$$\vec{\Omega} \cdot \vec{\nabla} I_{\nu} = \rho \kappa_{\nu}'(T, \rho) (S_{\nu}(T, \rho) - I_{\nu})$$

• Neutron emission is computed from the reaction rate:

$$\frac{dN}{dt} = \frac{\rho^2}{2m_D} \int_0^\infty \sigma v f(v) dv$$

• The emission is fed through realistic detector responses to generate a synthetic dataset

We conduct synthetic study using data generated from LILAC to understand sensitivities to transport quantities

^{*}T. Hilsabeck, *PYRIMADS PYthon Radiation IMaging And Detection Simulation*, Prompt Radiation Detection and Imaging Workshop (2022) LLNL-PRES-829846

The reduced model and Bayesian inference is able to reproduce the synthetic data from LILAC.

The data is well-explained by the simplified model

The reduced model and synthetic data constrain key transport quantities of the system.

Self-emission measurements of CH shell implosions are sensitive to energy transport properties at Gbar conditions

Summary

Self-emission measurements of OMEGA 60 spherical implosion experiments constrain transport properties at Gbar pressures

- Convergent high energy density (HED) experiments are able to assemble materials to Gbar pressures.
- The measured self-emission from these experiments strongly depends on energy transport quantities such as the opacity of the shell and the thermal conductivity of the hotspot.
- A semi-analytic model in a Bayesian inference framework is used to perform a synthetic study to understand the sensitivity of the measured emission to the underlying transport.

Self-emission measurements of CH shell implosions are sensitive to energy transport properties at Gbar conditions

