Radiation Trapping and Hot-Spot Energy Balance in High-Z Pusher Implosions

A. Shvydky University of Rochester Laboratory for Laser Energetics 64th Annual Meeting of the American Physical Society Division of Plasma Physics Spokane, WA October 17-21, 2022

Summary

Radiation trapping in high-Z pushered implosions is effective in reducing the energy required for ignition

- Thermal conduction losses from the hot spot in high-Z
 pushered implosions are negligible
- The condition for effective radiation trapping by high-Z pushers is

 $R_{\rm hs} \gg x_0 \gg l_{\rm Ross}^*$

- Single-shell cryo-layered high-Z pushered design is developed as a surrogate for multiple-shell NIF desings to study the radiation trapping on Omega
- Future work will include stability optimization using density graded W-Be shells and sensitivity studies to preimposed shell modulations

 x_0 – Marshak or ablative heat wave width

 $l_{\rm Ross}$ – Rosseland photon mean free path

Collaborators

A. Shvydky, R. Epstein, D. Haberberger, J. Carroll-Nellenback, S.X. Hu, A.V. Maximov, and V.N. Goncharov University of Rochester Laboratory for Laser Energetics

> S.M. Finnegan and J. Smidt Los Alamos National Laboratory

Direct-drive double shell* (D3S) implosion was used to study the hot spot energetics

No CBET and no nonlocal thermal transport

^{*} S. H. Hu et al., Phys. Rev. E 100, 063204 (2019).

Radiation trapping in high-Z pushers reduces the energy required for ignition

The radiation trapping is effective when $R_{\rm hs} \gg x_0 \gg l_{\rm Ross}$

 $R_{\rm hs} \gg x_0$ – internal energy in the Marshak/ablative wave \ll hot spot energy $x_0 \gg l_{\rm Ross}$ – the radiation is trapped since radiation flux $F_{\rm R} \sim \sigma_{\rm SB} T^4 \frac{l_{\rm Ross}}{x_0}$

 $R_{\rm hs}$ – DT hot spot radius

- x_0 Marshak or ablative heat wave width
- l_{Ross} Rosseland photon mean free path

** AOT: astrophysical opacity tables

W. F. Huebner et al., Los Alamos National Laboratory, Los Alamos, NM, Report LA-6760-M (1977);

^{*} R. Epstein et al., JO04:00010, this session

Adding cryo DT tamper layer to Omega single-pusher prevents high-Z material from releasing into gas and becoming part of the hot spot

Adding Argon to DT enhances the radiation from the hot spot, making the implosion performance sensitive to radiation losses

Radiation trapping in high-Z pushered implosions is effective in reducing the energy required for ignition

- Thermal conduction losses from the hot spot in high-Z
 pushered implosions are negligible
- The condition for effective radiation trapping by high-Z pushers is

 $R_{\rm hs} \gg x_0 \gg l_{\rm Ross}^*$

- Single-shell cryo-layered high-Z pushered design is developed as a surrogate for multiple-shell NIF desings to study the radiation trapping on Omega
- Future work will include stability optimization using density graded W-Be shells and sensitivity studies to preimposed shell modulations

^{*} $R_{\rm hs}$ – DT hot spot radius

 x_0 – Marshak or ablative heat wave width

 $l_{\rm Ross}$ – Rosseland photon mean free path

Heat conduction in high-Z materials is through radiation

Spitzer electron thermal conduction flux:*

$$Q_{\rm S} = -\chi_{\rm S} \nabla T$$
, where
 $\chi_{\rm S} = rac{(8/\pi)^{rac{3}{2}}}{(1+3.3/Z)} \; rac{(k_{\rm B}T)^{5/2}k_{\rm B}}{Ze^4m^{1/2}{
m ln}\Lambda}$

 $k_{\rm B}$ is Boltzmann constant, *Z* is ionization state *e* is electron charge, *m* is electron mass ln Λ is Coulomb logarithm

Radiation flux when $T_r = T$:*

$$Q_{\rm R} = -\chi_{\rm R} \nabla T$$
, where

$$\chi_{\rm R} = \frac{16}{3} \ l_{\rm Ross} \sigma_{\rm SB} T^3$$

 l_{Ross} is Rosseland mean free path σ_{SB} is Stefan-Boltzmann constant

^{*} S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion (Clarendon Press, Oxford, 2004)

** AOT: astrophysical opacity tables
 W. F. Huebner et al., Los Alamos National Laboratory, Los Alamos, NM, Report LA-6760-M (1977);

IIE

Thermal conduction losses from the hot spot in high-Z pushered implosions are negligible

