

Raman Amplification with a 1 x 10¹⁵ W/cm² Seed

Jessica L. Shaw University of Rochester Laboratory for Laser Energetics 64th Annual Meeting of the American Physical Society Division of Plasma Physics 17-21 October 2022

M. V. Ambat, K. R. McMillen, J. Pigeon, S. Bucht, D. Haberberger, D. P. Turnbull, J. P. Palastro and D. H. Froula

University of Rochester, Laboratory for Laser Energetics

ROCHESTER

Summary

The UR LLE Raman amplification platform explores a unique parameter space including a joule-class pump and a seed with intensities \geq 1 x 10¹⁵ W/cm²

- Initial experiments have demonstrated single-pass Raman amplification with amplification factors as high as 12.6x and efficiencies as high as 7.4%.
- Amplification and efficiency scale linearly with pump intensity for intensities up to 1.1 x 10¹⁶ W/cm² and 3.3 x 10¹⁵ W/cm², respectively, then roll off
- The amplification factor scales inversely with seed intensity, while the efficiency scales approximately linearly with seed intensity

Physical Picture

Raman amplification uses a plasma wave to transfer energy from a longer, moreenergetic pump pulse to a shorter seed pulse

Raman amplification is a potential route to achieve focused intensities > 10²³ W/cm², which would open new fields of physics such as testing QED in the low-energy, strong-field regime

Motivation

The LLE Raman amplification experiments explore the process in a previously unexplored regime in search of a practical, scalable amplifier

 For Raman amplification to be a viable technology to produce high focused intensities, need to demonstrate that it can be scaled to the PW level

- State-of-the-art OPCPA systems in ~10 PW
- Goal is to demonstrate a proof-of-principle system that would be scalable to the PW level, based on three minimum criteria*
 - Intensity gains \geq 10
 - Output intensities \geq 100x pump intensity
 - Efficiency \geq 30%
- Our platform can access some of the major factors limiting the efficiency, which is the criterion most challenging to satisfy and underlying the other two criteria
 - Careful study of pump propagation
 - High seed intensity so no growth/evolution time required
- Other capabilities include
 - Large amounts of pump energy available (up to 5.5 J on target), allowing potential for large energy transfer to the Seed
 - Ability to study Seed-ionized regime owing to high seed intensity

Experimental Setup

Transmitted energy and backscattered energy and spectrum are measured for the pump

Seed transmitted energy and spectrum are measured

Results

Backing pressure was tuned to optimize resonant density for amplification

1 x 10¹⁹ cm⁻³ based on backscattered spectrum

The amplification factor scales ~ linearly with pump intensity for intensities up to $1.2 \times 10^{16} \text{ W/cm}^2$

The amplification factor scales ~ linearly with pump intensity for intensities up to $1.2 \times 10^{16} \text{ W/cm}^2$ before rolling over and becoming highly irreproducible

The efficiency peaks at a lower pump intensity of 3.3 x 10¹⁵ W/cm² before also rolling off

The efficiency peaks at a lower pump intensity of 3.3 x 10¹⁵ W/cm² before also rolling off

Scaling with Seed Intensity

The maximum amplification factor scales inversely with seed intensity and shows high shot-to-shot variation at the lowest seed intensities

Scaling with Seed Intensity

The efficiency scales ~ linearly with seed intensity and shows a much stronger scaling with less fluctuation for the 9 ns heater timing

The UR LLE Raman amplification platform explores a unique parameter space including a joule-class pump and a seed with intensities $\geq 1 \times 10^{15} \text{ W/cm}^2$

- Initial experiments have demonstrated single-pass Raman amplification with amplification factors as high as 12.6x and efficiencies as high as 7.4%.
- Amplification and efficiency scale linearly with pump intensity for intensities up to 1.1 x 10¹⁶ W/cm² and 3.3 x 10¹⁵ W/cm², respectively, then roll off
- The amplification factor scales inversely with seed intensity, while the efficiency scales approximately linearly with seed intensity

KOCHESTER

17

UR IIF