Electron-electron scattering in dense plasma transport:
why it matters, why it is difficult, and what we can do about it today
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Accounting for electron-electron scattering is the next theoretical threshold for

dense plasma transport calculations to cross
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« Why does it matter?
— Electron-electron scattering is an efficient means of energy transfer between electrons
— Conduction electron populations are sensitive to e-e scattering
« Why is it difficult?
— “Ab initio” DFT+KG misses e-e scattering
— Existing methods for going beyond DFT+KG is very painful (e.g., MBPT)

— Quantum kinetic theory is not straightforward to evaluate (esp. at strong coupling) and is sensitive to
model choices (bound vs free electrons, Coulomb logs)

« What can we do about it today?

— Quantum Landau/Fokker-Planck kinetic theory with mean-force Coulomb logarithms
— TD-DFT to quantify dynamic screening of fast electrons relevant to nonlocal conduction




The physics of conduction electrons is highly sensitive to degeneracy
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How quickly is the degenerate limit reached?
* L. Spitzer, Jr. and R. Hirm, Phys. Rev. 89, 977 (1953).
** H. Reinholz et al., Phys. Rev. E 91, 043105 (2015).
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The latest Kubo-Greenwood calculations approaching the non-degenerate limit
show a total absence of electron-electron scattering
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Until we have “ab initio” methods that include e-e scattering, there is no
theoretical gold standard to judge simpler models

* M. French et al., Phys. Rev. E 105, 065204 (2022).
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In the absence of a high-fidelity simulation method, our best available tool is
quantum kinetic theory

UR
LLE

Exact equations of motion
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In the absence of a high-fidelity simulation method, our best available tool is

quantum kinetic theory
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* J. Daligault, Phys. Plasmas 25, 082703 (2018).



A quantum Landau/Fokker-Planck model is a practical way to extend non-
degenerate plasma kinetic theory to moderate degeneracy
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« Coulomb logarithms are a convenient entry point for patching in strong-coupling effects
« Construct from mean-force scattering cross-sections, o (E) and o . (E)
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« Mean-force potentials provided by average-atom two-component plasma model f
— Recovers Debye-Huckel/Thomas-Fermi screening in ideal limit 5 S
— Accounts for static correlations at non-ideal conditions E
— Includes effects of ion shell structure at short range .
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* J. Daligault, Phys. Plasmas 25, 082703 (2018).

** C. E. Starrett, High Energy Density Phys. 25, 8 (2017).

T N. R. Shaffer & C. E. Starrett, Phys. Rev. E 101, 013208 (2020).

¥ N. R. Shaffer and C. E. Starrett, Phys. Rev. E 101, 052304 (2020).




Transport calculations in hydrogen highlight the importance of e-e scattering in
the non-degenerate and partially degenerate regimes
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Quantum kinetic theories agree for weakly degenerate plasmas, but
low-temperature behavior is less clear.
* N. R. Shaffer and C. E. Starrett, Phys. Rev. E 101, 052304 (2020).
Hyd rogen 3 **Y.T. Lee and R. M. More, Phys. Fluids 27, 1273 (1984).
— t M. P. Desjarlais et al., Phys. Rev. E 95, 033203 (2017).
p 40 g/cm 8. X. Hu et al., Phys. Rev. E 89, 043105 (2014).
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QMD results and experimental measurements of solid-density Al benchmark
qLFP’s behavior at low temperatures
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qLFP predicts e-e collisions remain relevant at low

temperatures, but more sophisticated theories are needed.

Aluminum -
3 * N. R. Shaffer and C. E. Starrett, Phys. Rev. E 101, 052304 (2020).
p= 2.7 g / cm ** B, L. Witte et al., Phys. Plasmas 25, 056901 (2018).
T A. McKelvey et al., Sci. Rep. 7, 7015 (2017).




Stopping power calculations using TD-DFT are a window into dynamic screening
physics relevant to conduction electrons
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« Launch a fast test electron into a dense plasma

« Energy loss (stopping power) of a test electron
is sensitive to the dynamic response of the
plasma electrons

Stopping Range in Hot Dense CH

« Able to capture difficult order-unity dynamic ,
screening corrections to standard Fokker-Planck
e-e collision rates i

— MFP Fit: 0.1 gcc, 300eV
— MFP Fit: 0.5 gcc, 100eV
—— MFP Fit: 1.0 gcc, 100eV
MFP Fit: 0.1 gcc, 1000eV
—— MFP Fit: 0.5 gcc, 500eV
— MFP Fit: 1.0 gcc, 500eV
—— MFP Fit: 0.05 gcc, 1000eV

Mean-Free Path [pym]

« See more in Katarina Nichols’s talk this afternoon!
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Summary/Conclusions

Accounting for electron-electron scattering is the next theoretical threshold for

dense plasma transport calculations to cross
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« Why does it matter?
— Electron-electron scattering is an efficient means of energy transfer between electrons
— Conduction electron populations are sensitive to e-e scattering
« Why is it difficult?
— “Ab initio” DFT+KG misses e-e scattering
— Existing methods for going beyond DFT+KG is very painful (e.g., MBPT)

— Quantum kinetic theory is not straightforward to evaluate (esp. at strong coupling) and is sensitive to
model choices (bound vs free electrons, Coulomb logs)

« What can we do about it today?

— Quantum Landau/Fokker-Planck kinetic theory with mean-force Coulomb logarithms
— TD-DFT to quantify dynamic screening of fast electrons relevant to nonlocal conduction
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Electron-electron scattering plays essential role in nondegenerate plasma
transport
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Lorentz model: e-e collisions maintain local equilibrium (Maxwell-Boltzmann distribution) but do not affect
conduction electrons (valid as Z - infinity)

— N.B. Lee-More is the quantum analogue

« Misses two interconnected effects:

— Direct e-e scattering influence: compared to e-i collisions, e-e collisions are very effective at changing an
electron’s energy (important for thermal conduction)

— Reshaping: conduction electrons are weakly collisional (recall mfp ~ v4), therefore their distribution is
sensitive to the inclusion/neglect of additional collision channels

« Classic result (Spitzer & Harm): neglecting e-e collisions in hydrogen is a 2x error in electrical conductivity
and 4x error in thermal conductivity

* In the extreme degeneracy limit, e-e collisions must become negligible. But how quickly is this limit reached
in practice? What is the role of e-e scattering at T ~ E.?




The failure of DFT+KG highlights the need for developing more sophisticated
“first principles” calculations for transport properties
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- DFT is a theory of fictitious non-interacting electrons — no V., means no e-e scattering!
— Hohenberg-Kohn only promises that DFT will deliver an accurate density (or functionals thereof)
— But Kubo says transport comes from current fluctuations (J(t), Q(t)) which are not density functionals

«  What about TD-DFT?

— Runge-Gross says we can obtain the true J(t) (not sure about Q(t))
— Requires an accurate current-density XC functional, including memoryt

« In order to capture e-e scattering, our “first-principles” calculations need more principles!
— Bring V., back into the picture with many-body perturbation theory?

— Speculation: focusing on low-frequency phenomena (conduction) might inspire computationally tractable
approximations

* J. Dufty et al., Contrib. Plasma. Phys. 58, 150 (2017).
** M. French et al., Phys. Rev. E 105, 065204 (2022).
T N. Maitra, |. Souza, and K. Burke, Phys. Rev. B 68, 045109 (2003).




In the absence of a high-fidelity simulation method, our best available tool is
quantum kinetic theory
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Exact equations of motion
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In the absence of a high-fidelity simulation method, our best available tool is
quantum kinetic theory
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E.g., Kadanoff-Baym

Key quantity: self-energy
operator

Includes exchange,
correlation, excitations,
everything (in principle)!

But very complicated to
solve.

* L. P. Kadanoff & G. Baym, Quantum Statistical Mechanics (1962).
** A. Stan, N. E. Dahlen, and R. van Leeuven, J. Chem. Phys. 130, 224101 (2009).




In the absence of a high-fidelity simulation method, our best available tool is

quantum kinetic theory
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Key quantity: collision
cross-section

Solutions known for

extreme (non-)degeneracy,

but not intermediate

“Solution” == “Champan-Enskog solution”
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Key quantity: dielectric
function

Approximate non-
degenerate solutions
known, but not for
arbitrary degeneracy

* E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552 (1933).
** H. Reinholz et al., Phys. Rev. E 91, 043105 (2015).
t H. D. Whitley et al., Contrib. Plasma Phys. 55, 192 (2015).




In the absence of a high-fidelity simulation method, our best available tool is

quantum kinetic theory
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logarithm

Solutions known at any
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* J. Daligault, Phys. Plasmas 25, 082703 (2018).



Analysis of scattering angle distributions give insight into the breakdown of the
small-angle approximation at low temperatures
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* N. R. Shaffer and C. E. Starrett, Phys. Rev. E 101, 053204 (2020).
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