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Schematic of a magnetic filament

Rinderknecht et al., New J. Phys 23, 095009 (2021)

3-D PIC simulations:
5 ncr channel fill

10 ncr channel fill

“solid” (~200 ncr)

Electron temperatures (TPW)
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Summary

• Intense lasers in relativistically-transparent plasmas generate ultra-strong magnetic filaments
－ Electrons are trapped and accelerated, efficiently radiating MeV-scale photons

• Short-pulse (140 fs) experiments at TPW demonstrated magnetic filament radiation
－ The predicted electron and photon signatures were observed in a subset of experiments

• Longer pulse (700 fs) experiments on OMEGA-EP show different behavior 
－ Electron acceleration does not appear to depend on initial channel density

Magnetic filaments promise a repeatable and efficient laser-driven 
source of MT fields, relativistic electrons, and MeV photons
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A relativistically-transparent laser pulse drives a relativistic current in a plasma 
channel, with a strong azimuthal magnetic field: a magnetic filament

Quasi-static magnetic fields with amplitude 
of the order of the laser field are produced.   

1Z. Gong, et al., Phys. Rev. E 102, 013206 (2020)

3-D PIC simulations (a0 = 50)1:
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Electrons oscillate within the filament: those in phase with the laser are 
rapidly accelerated, and radiate in the strong magnetic field.

Electron orbits & acceleration (a0 = 50)1

1200

0

600 γ

1Z. Gong, et al., Phys. Rev. E 102, 013206 (2020);
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Electrons oscillate within the filament: those in phase with the laser are 
rapidly accelerated, and radiate in the strong magnetic field.

At ultrahigh intensities, magnetic filaments are predicted 
to radiate MeV photons with > 10% efficiency

1Z. Gong, et al., Phys. Rev. E 102, 013206 (2020); 2D. J. Stark, et al., Phys. Rev. Lett. 116, 185003 (2016)

Electron orbits & acceleration (a0 = 50)1
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0

600 γ

Photon radiation (a0 = 190)2

# photons
>30 MeV

(a.u.)

Radiation events:
> 2 MeV
> 30MeV
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Laser:

• Wavelength: 1057 nm
• Duration: 140 fs
• Intensity: [1.09 ± 0.07]×1021 W/cm2 

a0 = 29.9 ± 1.0
• Pointing: 8-μrad rms 5-μm on target

• Primary diagnostic: EPPS electron spectrometer

Initial experiments to study relativistically transparent magnetic filaments
were performed at the Texas Petawatt Laser (TPW)1

1See http://texaspetawatt.ph.utexas.edu/
2H. Chen et al., RSI 79, 10E533 (2008)

Given the pointing stability (5-μm rms), 
we did not expect channel interactions on every shot.  

6-μm ID
channel

Electron microscope image

laser-drilled 
channel array

Channels filled with low-density CH foam: 
15 or 30 mg/cm3

Targets:

http://texaspetawatt.ph.utexas.edu/
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The ‘hot’ electron temperature was elevated on 2 of 8 microchannel shots, 
consistent with the predicted magnetic filament behavior

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

3-D PIC simulations:
15 mg/cm3 channel fill

30 mg/cm3 channel fill

“solid” (~0.6 g/cm3)

Electron temperatures 

ne = 5 ncr

10 ncr

Example electron spectra 

3D PIC (channel)

3D PIC 
(solid)

5 ncr foam
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The ‘hot’ electron temperature was elevated on 2 of 8 microchannel shots, 
consistent with the predicted magnetic filament behavior

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

3-D PIC simulations:
15 mg/cm3 channel fill

30 mg/cm3 channel fill

“solid” (~0.6 g/cm3)

Electron temperatures 

ne = 5 ncr

10 ncr

Example electron spectra 

3D PIC (channel)

3D PIC 
(solid)

5 ncr foam
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A follow-on campaign on OMEGA-EP (Dec 2021) used a 
new target engineering technique to improve laser-target coupling

Electron radiograph 

Foam-filled channel targets:

Channel ID: 6 μm 
Separation: 8 μm 
Wall thickness: 2 μm 

OMEGA-EP Laser:

• Wavelength: 1054 nm
• Duration: 700 fs
• Intensity: [0.79 ± 0.14]×1021 W/cm2 

a0 = 25.2 ± 2.2

Target shots:

• [×5] 6-μm channels, 1-ncr fill
• [×6] 6-μm channels, 1.6-ncr fill
• [×3] 6-μm channels, unfilled

The microchannel structure is 3-D printed 
inside a low-density foam slab
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The first OMEGA-EP experiments show electron acceleration on all target types: 
No significant difference was observed between target types

EPPS data:

Shot 35903: BL, empty

Shot 35893: BL, 1 ncr

Shot 35901: BL, 1.6 ncr

electron spectra:
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Subsequent 3-D PIC simulations predict that, for 0.7 ps pulses, 
the magnetic filament properties are independent of initial fill density

Empty

𝟏𝟏 𝒏𝒏𝒄𝒄

𝟓𝟓 𝒏𝒏𝒄𝒄

Slide courtesy of: Kathleen Weichman
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Subsequent 3-D PIC simulations predict that, for 0.7 ps pulses, 
the magnetic filament properties are independent of initial fill density

The simulated electron acceleration and photon radiation do not vary with fill density at 0.7 ps.

Ejected electrons Photon emission

Slide courtesy of: Kathleen Weichman
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For future experiments, we will continue to test out advanced targets for 
improved laser-channel coupling and “long-pulse” coupling physics

Improved target arrays
(EP 2022; TPW in 2023)

Concentrator targets
(EP in 2023)

See Matt VanDusen-Gross’ poster: “Designing Optical Concentrator 
Targets for High-Intensity Lasers” (JP11.19, Tues 2—5pm)

Channels extend slightly (10 μm or less) beyond foam.
Channel entrances tapered to resolution limit (0.5 μm)

2PP polymer

Single microchannel
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Summary

• Intense lasers in relativistically-transparent plasmas generate ultra-strong magnetic filaments
－ Electrons are trapped and accelerated, efficiently radiating MeV-scale photons

• Short-pulse (140 fs) experiments at TPW demonstrated magnetic filament radiation
－ The predicted electron and photon signatures were observed in a subset of experiments

• Longer pulse (700 fs) experiments on OMEGA-EP show different behavior 
－ Electron acceleration does not appear to depend on initial channel density

Magnetic filaments promise a repeatable and efficient laser-driven 
source for MT fields, relativistic electrons and MeV photons
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Appendix

____________
* First reference

** Second reference
† Third reference
‡ Fourth reference
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Laser ELI-NP† ELI-Beamlines L4‡

λ 0.8 μm 1.057 μm
τ 23 fs 150 fs

Peak power 10 PW 10 PW
Intensity  (a0) 5×1022 W/cm2 (153) 5×1022 W/cm2 (202)

Design choice: Sα = 0.01 Sα = 0.05 Sα = 0.01 Sα = 0.05

Photon energy <ε*> 68 MeV 9.2 MeV 96 MeV 19 MeV

Total energy Eγ,tot 111 J 51 J 797 J 727 J

# photons Nγ 1.0×1013 3.5×1013 5.2×1013 2.5×1014

Efficiency η 48%* 22%* 53%* 48%*

With 10-PW lasers now becoming available, magnetic filaments promise 
exciting opportunities for high-flux gamma-ray sources

By varying the channel design, the photon spectrum and flux may be optimized. 
____________
† D. Ursescu, et al., Romanian Reports in Physics 68, S11 (2016)
‡ S. Weber, et al., Matter and Radiation at Extremes 2, 149 (2017)

*model limited by radiation depletion
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Using simple assumptions for the electron acceleration and orbits,
we derived scaling laws for the radiation from magnetic filaments

For more details, please see:
H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

doi:10.1088/1367-2630/ac22e7 

Intensity (a0), Relativistic transparency (Sα = ne/ncra0), Focal radius (Rλ), Pulse duration (τν) 4 Parameters:
 3 Constants: Initial e- momentum scalar (fi ~ 1), cutoff scalar (ft < 1), radiation duty cycle (fr < 1)

…if focal radius R < rmb: …if focal radius R > rmb:Radiation property:
36 2 1 2
0*

1101.38 t m etot
a Sf m cR µα λλ

− −−≈ × 7 2 1 23
0*

3/204 1.40 i t m etot
S m caf f µα λ− −−≈ ×Photon energy

2 3 1 2
0

45
, 7.74 10tot r t T eE Rff aC m cγ λ ντ

−≈ × 1 3 1 2
, 0

25 1107.84tot i r t T eE f f C a cSf mRλαγ ντ
− −≈ ×Radiated energy

2 38 1
, 05.59 10tot r t T mN f f C a S Rα λ µνγ τ λ−= × 1 1/8 2

0
2 2

, 1.78 10tot i r t T mRSaN f f f Cγ µνλα λτ−= ×# photons
7 3 1 13

0
22.88 10 r t T ma Rff Cγ µλη λ− − −= × 0

18 13 1 32. 1092 r t i T mf f C Sf a αγ µη λ−−− −= ×Radiation efficiency
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The scaling laws show good agreement with 3-D PIC simulations 
that varied the focal radius, with reasonable constants

(d) η

Photon energy Total radiated energy # photons Efficiency

Constants: fi = 1.533, initial electron momentum scalar,
ft = 0.311, cutoff time scalar,
fr = 0.189, radiation duty cycle,

0i if aγ ≡

, ,cut t maxft tν ν≡

r synchPfP ≡

Parameters: a0 = 190 (5×1022 W/cm2)
Sα = 0.105 (ne = 20ncr)
Rλ = [0.65, 2.1]
τν = 10.5 (35 fs)

3-D PIC
scaling

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)
doi:10.1088/1367-2630/ac22e7 
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