Initial Experimental Results on Relativistically Transparent Magnetic Filaments

Electron temperatures (TPW)

Hans Rinderknecht University of Rochester Laboratory for Laser Energetics

ROCHESTER

64th annual APS-DPP meeting Spokane, WA 11:42 AM, Monday Oct 17th 2022

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING 姚

UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 🏹

Magnetic filaments promise a repeatable and efficient laser-driven source of MT fields, relativistic electrons, and MeV photons

- Electrons are trapped and accelerated, efficiently radiating MeV-scale photons
- Short-pulse (140 fs) experiments at TPW demonstrated magnetic filament radiation
 - The predicted electron and photon signatures were observed in a subset of experiments
- Longer pulse (700 fs) experiments on OMEGA-EP show different behavior
 - Electron acceleration does not appear to depend on initial channel density

UR

Collaborators

LLE/UR:

- Hans Rinderknecht
- Gerrit Bruhaug
- Kathleen Weichman
- Matthew Van Dusen-Gross
- John Palastro
- Mingsheng Wei

UCSD:

- Alexey Arefiev
- Tao Wang

HZDR:

- Toma Toncian
- Alejandro Laso Garcia

ELI-NP:

- Domenico Doria
- Klaus Spohr

Texas Pettawatt (TPW)/UT Austin:

- Hernan J. Quevedo
- Todd Ditmire

General Atomics (GA):

- Jarrod Williams
- Alex Haid

Johns Hopkins University:

Dan Stutman

A relativistically-transparent laser pulse drives a relativistic current in a plasma channel, with a strong azimuthal magnetic field: a magnetic filament

3-D PIC simulations $(a_0 = 50)^1$:

 $a_0 \equiv \frac{|e|E_0}{m_c \omega c} \propto \sqrt{Intensity}$

Magnetic field of current normalized to laser field:

Quasi-static magnetic fields with amplitude of the order of the laser field are produced.

¹Z. Gong, et al., Phys. Rev. E 102, 013206 (2020)

ROCHESTER

Electrons oscillate within the filament: those in phase with the laser are rapidly accelerated,

¹Z. Gong, et al., Phys. Rev. E 102, 013206 (2020);

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 75 5

Electrons oscillate within the filament: those in phase with the laser are rapidly accelerated, and radiate in the strong magnetic field.

At ultrahigh intensities, magnetic filaments are predicted to radiate MeV photons with > 10% efficiency

¹Z. Gong, et al., Phys. Rev. E 102, 013206 (2020);

²D. J. Stark, et al., Phys. Rev. Lett. 116, 185003 (2016)

Initial experiments to study relativistically transparent magnetic filaments were performed at the Texas Petawatt Laser (TPW)¹

<u>Laser:</u>

- Wavelength:
- Duration:
- Intensity:
- Pointing:

- 1057 nm 140 fs $[1.09 \pm 0.07] \times 10^{21}$ W/cm² $a_0 = 29.9 \pm 1.0$ 8-µrad rms → 5-µm on target
- Primary diagnostic: EPPS electron spectrometer

Targets:

Given the pointing stability (5-µm rms), we did not expect channel interactions on every shot.

laser-drilled

channel array

¹See <u>http://texaspetawatt.ph.utexas.edu/</u> ²H. Chen et al., RSI 79, 10E533 (2008) PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

Channels filled with low-density CH foam:

15 or 30 mg/cm³

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots

Electron temperatures

 $\overline{\mathbf{Q}}$

7

Shot number

8

 $\overline{\mathbf{\Phi}}$

ROCHESTER H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021)

SCIENCE & ENGINEERING PLAS UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS

The 'hot' electron temperature was elevated on 2 of 8 microchannel shots, consistent with the predicted magnetic filament behavior

A follow-on campaign on OMEGA-EP (Dec 2021) used a new target engineering technique to improve laser-target coupling

OMEGA-EP Laser:

1054 nm

- Wavelength:
 - Duration: 70
- Intensity:
- 700 fs [0.79 \pm 0.14]×10²¹ W/cm² $a_0 = 25.2 \pm 2.2$

Foam-filled channel targets:

Target shots:

• [×5] • [×6]

- 6-μm channels, 1-n_{cr} fill 6-μm channels, 1.6-n_{cr} fill
- [×3] 6-µm chan
 - 6-µm channels, unfilled

Channel ID:	6 µm
Separation:	8 µm
Wall thickness:	2 µm

The microchannel structure is 3-D printed inside a low-density foam slab

The first OMEGA-EP experiments show electron acceleration on all target types: No significant difference was observed between target types

ROCHESTER

Subsequent 3-D PIC simulations predict that, for 0.7 ps pulses, the magnetic filament properties are independent of initial fill density

ROCHESTER Slide courtesy of: Kathleen Weichman

Subsequent 3-D PIC simulations predict that, for 0.7 ps pulses, the magnetic filament properties are independent of initial fill density

Ejected electrons

The simulated electron acceleration and photon radiation do not vary with fill density at 0.7 ps.

' LASER SCIENCE & ENGINEERING **13** UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS

For future experiments, we will continue to test out advanced targets for improved laser-channel coupling and "long-pulse" coupling physics

Improved target arrays (EP 2022; TPW in 2023)

Channels extend slightly (10 μ m or less) beyond foam. Channel entrances tapered to resolution limit (0.5 μ m) Concentrator targets (EP in 2023)

See Matt VanDusen-Gross' poster: "Designing Optical Concentrator Targets for High-Intensity Lasers" (JP11.19, Tues 2—5pm)

ROCHESTER

Magnetic filaments promise a repeatable and efficient laser-driven source for MT fields, relativistic electrons and MeV photons

- Electrons are trapped and accelerated, efficiently radiating MeV-scale photons
- Short-pulse (140 fs) experiments at TPW demonstrated magnetic filament radiation
 - The predicted electron and photon signatures were observed in a subset of experiments
- Longer pulse (700 fs) experiments on OMEGA-EP show different behavior
 - Electron acceleration does not appear to depend on initial channel density

UR

Appendix

* First reference ** Second reference † Third reference ‡ Fourth reference

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING

With 10-PW lasers now becoming available, magnetic filaments promise exciting opportunities for high-flux gamma-ray sources

UR IIE

Laser	ELI-NP [†]		ELI-Beamlines L4 [‡]	
λ	0.8 µm		1.057 µm	
т	23 fs		150) fs
Peak power	10 PW		10	PW
Intensity (a ₀)	5×10 ²² W/cm ² (153)		5×10 ²² W/cm ² (202)	
Design choice:	S _α = 0.01	S _α = 0.05	S _α = 0.01	S _α = 0.05
Photon energy <ε₊>	68 MeV	9.2 MeV	96 MeV	19 MeV
Total energy $E_{\gamma,tot}$	111 J	51 J	797 J	727 J
# photons N _γ	1.0×10 ¹³	3.5×10 ¹³	5.2×10 ¹³	2.5×10 ¹⁴
Efficiency η	48%*	22%*	53%*	48%*

By varying the channel design, the photon spectrum and flux may be optimized.

[†] D. Ursescu, et al., Romanian Reports in Physics 68, S11 (2016) [‡] S. Weber, et al., Matter and Radiation at Extremes 2, 149 (2017)

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING University of rochester, laboratory for laser energetics

Using simple assumptions for the electron acceleration and orbits, we derived scaling laws for the radiation from magnetic filaments

Radiation property:	<u>if focal radius R < r_{mb}:</u>	if focal radius R > r _{mb} :
Photon energy	$\langle \epsilon_* \rangle_{tot} \approx 1.38 \times 10^{-6} f_t^2 a_0^3 S_\alpha^{-1} R_\lambda \lambda_{\mu m}^{-1} m_e c^2$	$\left\langle \epsilon_* \right\rangle_{tot} \approx 4.40 \times 10^{-7} \sqrt{f_i} f_t^2 a_0^3 S_\alpha^{-3/2} \lambda_{\mu m}^{-1} m_e c^2$
Radiated energy	$E_{\gamma,tot} \approx 7.74 \times 10^2 f_r f_t^3 C_T^{-1} a_0^5 R_{\lambda}^4 \tau_{\nu} m_e c^2$	$E_{\gamma,tot} \approx 7.84 \times 10^{1} f_{i} f_{r} f_{t}^{3} C_{T}^{-1} a_{0}^{5} S_{\alpha}^{-1} R_{\lambda}^{2} \tau_{v} m_{e} c^{2}$
# photons	$N_{\gamma,tot} = 5.59 \times 10^8 f_r f_t C_T^{-1} a_0^2 S_\alpha R_\lambda^3 \tau_\nu \lambda_{\mu m}$	$N_{\gamma,tot} = 1.78 \times 10^8 \sqrt{f_i} f_r f_t C_T^{-1} a_0^2 S_{\alpha}^{1/2} R_{\lambda}^2 \tau_{\nu} \lambda_{\mu m}$
Radiation efficiency	$\eta_{\gamma} = 2.88 \times 10^{-7} f_r f_t^3 C_T^{-1} a_0^3 R_{\lambda}^2 \lambda_{\mu m}^{-1}$	$\eta_{\gamma} = 2.92 \times 10^{-8} f_r f_t^3 f_i C_T^{-1} a_0^3 S_{\alpha}^{-1} \lambda_{\mu m}^{-1}$

→ 4 Parameters: Intensity (a_0), Relativistic transparency ($S_\alpha = n_e/n_{cr}a_0$), Focal radius (R_λ), Pulse duration (τ_v) → 3 Constants: Initial e- momentum scalar ($f_i \sim 1$), cutoff scalar ($f_t < 1$), radiation duty cycle ($f_r < 1$)

> *For more details, please see:* H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021) doi:10.1088/1367-2630/ac22e7

The scaling laws show good agreement with 3-D PIC simulations that varied the focal radius, with reasonable constants

KOCHESTER

H.G. Rinderknecht, et al., New J. Phys. 23, 095009 (2021) doi:10.1088/1367-2630/ac22e7

PLASMA & ULTRAFAST LASER SCIENCE & ENGINEERING 🔌

UNIVERSITY OF ROCHESTER, LABORATORY FOR LASER ENERGETICS 👫 19