OMEGA Next Laser Facility --- Target Design Space

J. A. Marozas University of Rochester Laboratory for Laser Energetics 64th Annual Meeting of the American Physical Society Division of Plasma Physics 17-21 October 2022

OMEGA Next Laser Facility --- Target Design Space

OmegaNext: evaluated @{200kJ}

J. A. Marozas University of Rochester Laboratory for Laser Energetics 64th Annual Meeting of the American Physical Society Division of Plasma Physics 17-21 October 2022

OMEGA Next Laser Facility --- Target Design Space

Modest gain, mid-α

27

3

5

490

J. A. Marozas University of Rochester Laboratory for Laser Energetics 64th Annual Meeting of the American Physical Society Division of Plasma Physics 17-21 October 2022

OmegaNext: evaluated @{200kJ}

Summary

OmegaNext design-space mapping discovered stable regions with substantial fusion gain for each facility energy

- The Optimization-guided* tool, *aanji'Lilac*, maps the complex topology of the multi-dimensional design space (20-D)
 - Interactive visualization tools explore and evaluate promising regions to down-select the facility's proposed maximum energy over the range {50 – 300kJ}

- Higher facility energy offers expanded high-yield design-space accessible at smaller IFAR values and larger adiabats
 - Broadband laser driver expands ignition design-space
 - Improves absorption, smoothing and I_{peak}
 - Substantial gain has been found for IFAR < 30 and adiabat < 5, at a peak intensity I_{peak} ~1e15 W/cm²
 - Above I_{peak}>1e15 W/cm², increased performance is accompanied by increased risk of LPI

^{*}aanji'Lilac --- new MATLAB-based Optimization-guided design space scoping toolset IFAR --- In Flight Aspect Ratio LPI --- Laser Plasma Instabilities **2-D Draco sims of OmegaNext – see P. McKenty [JO04.00014] this conference

Collaborators

T. J. B. Collins, D. Cao, P. W. McKenty, W. Trickey, V. Goncharov University of Rochester, Laboratory for Laser Energetics

The proposed OmegaNext facility consists of multi-beam clusters illuminating laser direct-drive (LDD) targets with wide-bandwidth driver lines mitigating LPI* effects

Clusters of composite apertures illuminate an LDD ICF target

- The OmegaNext facility is being evaluated over the 50 300kJ range for ICF target performance tradeoffs with facility cost and size
 - Broadband laser expands ignition design-space
 - Improves absorption, smoothing and I_{peak}
- Flexible aperture arrays can be repurposed to alter aspects of beams on target during an implosion
 - The spot-size can match an imploding target; Zooming
 - Combine multiple apertures in time to increase intensity & energy; shock ignition

*LPI --- Laser Plasma Instabilities **OmegaNext wide-bandwidth laser concept --- J. Zuegel, C. Dorrer

• The design space is 20-D = {3-target,

• The design space is 20-D = {3-target, 5-picket, 3-shelf, 3-drive

• The design space is 20-D = {3-target, 5-picket, 3-shelf, 3-drive, 6-FFspot}

• The design space is 20-D = {3-target, 5-picket, 3-shelf, 3-drive, 6-FFspot}

- The 20-parameter prescription completely defines the simulation, which evaluates the ICF target performance
 - − → Only 20 numbers needed to reconstruct any simulation

As the *aanji'Lilac* optimization progresses towards its goal, it traverses the varied terrain while mapping out the design space along the way

- An optimization algorithm, *aanji'Lilac*, guides the exploration using a highly parallel system across nodes using a "shotgun" (scattered/diffusion) technique
 - The underlying algorithm is selectable {simplex [default], Levenberg-Marquardt, etc.}
 - Aanji'Lilac supports an arbitrary optimization metric function of {gain, adiabat, T_{ion}, etc.}
 - The choice of input parameters to vary is selectable
 - e.g. {R_{gas}, shelf onset, drive onset, drive riseTime} for timing
 - The 1-D rad-hydro code, *Lilac*, evaluates each iteration for ICF physics results, e.g. Y_{DT}, T_{ion}, P_{abl}, V_{imp}, etc.
- A variety of starting points map-out the rugged terrain, which is reminiscent of a craggy mountain range

- The terrain doesn't always follow conventional intuition
- e.g., in this example, gain increases with α due to its strong dependence on V_{imp}

Two OmegaNext facility options (100,200kJ) show a wide variety of ICF performance ranges

The sifting algorithms include multiple logical criteria options to peel back the maximal surface to find other suitable domains

The sifted data visualization plots allow interactive manipulation* to probe ICF performance metrics and launch subsequent optimizations

LLE

The sifted data visualization plots allow interactive manipulation* to probe ICF performance metrics and launch subsequent optimizations

The sifted data visualization plots allow interactive manipulation* to probe ICF performance metrics and launch subsequent optimizations

The expanding datasets of the OmegaNext facility energy options expose stable regions with substantial gains suitable for a wide variety of ICF experiments

Parameter	I _{peak} ~ 1.0e15 W/cm ²			
IFAR	25	30	29	30
Adiabat	1	1	2.5	3
V _{imp} [µm/ns]	335	385	480	500
Gain	20	32	2.1	1.5

LLE

Parameter	I _{peak} ~ 1.0e15 W/cm²			
IFAR	20	25	27	27
Adiabat	1	1	2.5	3
V _{imp} [µm/ns]	330	360	460	490
Gain	47	68	15	5

The expanding datasets of the OmegaNext facility energy options expose stable regions with substantial gains suitable for a wide variety of ICF experiments

Parameter	I _{peak} ~ 1.0e15 W/cm ²			
IFAR	25	30	29	30
Adiabat	1	1	2.5	3
V _{imp} [µm/ns]	335	385	480	500
Gain	20	32	2.1	1.5

LLE

Parameter	I _{peak} ~ 1.0e15 W/cm ²			
IFAR	20	25	27	27
Adiabat	1	1	2.5	3
V _{imp} [µm/ns]	330	360	460	490
Gain	47	68	15	5

High gain, Iow-IFAR, Iow-α

The expanding datasets of the OmegaNext facility energy options expose stable regions with substantial gains suitable for a wide variety of ICF experiments

Parameter	I _{peak} ~ 1.0e15 W/cm ²			
IFAR	25	30	29	30
Adiabat	1	1	2.5	3
V _{imp} [µm/ns]	335	385	480	500
Gain	20	32	2.1	1.5

I _{peak} ~ 1.0e15 W/cm ²			
20	25	27	27
1	1	2.5	3
330	360	460	490
47	68	15	5
	l _{peak} ^ 20 1 330 47	Ipeak 1.0e1 20 25 1 1 330 360 47 68	Ipeak 1.0e15 W/cm2 20 25 27 1 1 2.5 330 360 460 47 68 15

Modest gain, mid-α

LLE

Summary/Conclusions

OmegaNext design-space mapping discovered stable regions with substantial fusion gain for each facility energy

- The Optimization-guided* tool, *aanji'Lilac*, maps the complex topology of the multi-dimensional design space (20-D)
 - Interactive visualization tools explore and evaluate promising regions to down-select the facility's proposed maximum energy over the range {50 – 300kJ}
- Higher facility energy offers expanded high-yield design-space accessible at smaller IFAR values and larger adiabats
 - Broadband laser driver expands ignition design-space
 - Improves absorption, smoothing and I_{peak}
 - Substantial gain has been found for IFAR < 30 and adiabat < 5, at a peak intensity I_{peak} ~1e15 W/cm²
 - Above I_{peak}>1e15 W/cm², increased performance is accompanied by increased risk of LPI

^{*}aanji'Lilac --- new MATLAB-based Optimization-guided design space scoping toolset IFAR --- In Flight Aspect Ratio LPI --- Laser Plasma Instabilities

Backup ---- Slides

200kJ @full 0.8 < I_{peak} < 1.5 e15 W/cm² range; Illustrate different contour plotting views

